--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-2409-1947-lr-0.0003-bs-4-maxep-6 results: [] --- # bart-abs-2409-1947-lr-0.0003-bs-4-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3423 - Rouge/rouge1: 0.2439 - Rouge/rouge2: 0.0504 - Rouge/rougel: 0.2065 - Rouge/rougelsum: 0.2067 - Bertscore/bertscore-precision: 0.8544 - Bertscore/bertscore-recall: 0.8581 - Bertscore/bertscore-f1: 0.8562 - Meteor: 0.229 - Gen Len: 46.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.1377 | 1.0 | 217 | 3.9220 | 0.3283 | 0.1009 | 0.2612 | 0.2612 | 0.8785 | 0.8638 | 0.871 | 0.2695 | 33.0 | | 3.3219 | 2.0 | 434 | 3.7523 | 0.2756 | 0.0805 | 0.2368 | 0.237 | 0.8845 | 0.8545 | 0.8692 | 0.2111 | 25.0 | | 2.115 | 3.0 | 651 | 4.0783 | 0.282 | 0.0747 | 0.2116 | 0.2118 | 0.8663 | 0.8623 | 0.8642 | 0.2582 | 41.0 | | 1.1461 | 4.0 | 868 | 4.8795 | 0.251 | 0.0501 | 0.21 | 0.2102 | 0.8497 | 0.8506 | 0.8501 | 0.2025 | 37.0 | | 0.6272 | 5.0 | 1085 | 5.8094 | 0.2811 | 0.0751 | 0.229 | 0.2293 | 0.8628 | 0.8693 | 0.866 | 0.2058 | 44.0 | | 0.3841 | 6.0 | 1302 | 6.3423 | 0.2439 | 0.0504 | 0.2065 | 0.2067 | 0.8544 | 0.8581 | 0.8562 | 0.229 | 46.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1