--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-06-bs-8-maxep-6 results: [] --- # bart-abs-1509-0313-lr-3e-06-bs-8-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6809 - Rouge/rouge1: 0.3111 - Rouge/rouge2: 0.0793 - Rouge/rougel: 0.2212 - Rouge/rougelsum: 0.2213 - Bertscore/bertscore-precision: 0.8659 - Bertscore/bertscore-recall: 0.864 - Bertscore/bertscore-f1: 0.8649 - Meteor: 0.228 - Gen Len: 36.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.2815 | 1.0 | 109 | 6.6245 | 0.323 | 0.081 | 0.2516 | 0.2521 | 0.8764 | 0.8641 | 0.8702 | 0.2583 | 36.0 | | 0.3942 | 2.0 | 218 | 6.6890 | 0.2515 | 0.0697 | 0.2094 | 0.21 | 0.8374 | 0.8631 | 0.85 | 0.2474 | 48.0 | | 0.3862 | 3.0 | 327 | 6.6692 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3708 | 4.0 | 436 | 6.6624 | 0.2439 | 0.0504 | 0.2065 | 0.2067 | 0.8544 | 0.8581 | 0.8562 | 0.229 | 45.0 | | 0.3679 | 5.0 | 545 | 6.6795 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3629 | 6.0 | 654 | 6.6809 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1