--- license: apache-2.0 --- # RoboVLMs model card ## Introduction This repo contains the pre-trained models through **[RoboVLMs](https://github.com/Robot-VLAs/RoboVLMs)**, which is a unified framework for easily building VLAs from VLMs. We open-source three pre-trained model checkpoints and their configs: - `kosmos_ph_calvin_abcd`: RoboKosMos(KosMos+Policy Head) trained on the CALVIN dataset (split ABCD). - `kosmos_ph_calvin_abc`: RoboKosMos(KosMos+Policy Head) trained on the CALVIN dataset (split ABC). - `kosmos_ph_oxe-pretrain`: RoboKosMos(KosMos+Policy Head) trained on the OXE-magic-soup dataset. ## Usage The model can be used to predict action based on the vision and language input. RoboVLMs supports several VLA structures, multi-view input and various backbones. Taking `kosmos_ph_calvin_abcd` as an example: ```python import torch import json, functools from PIL import Image from robovlms.train.base_trainer import BaseTrainer from robovlms.data.data_utils import preprocess_image from robovlms.data.data_utils import get_text_function configs = josn.load(open('configs/kosmos_ph_calvin_abcd.json', 'r')) pretrained_path = 'checkpoints/kosmos_ph_calvin_abcd.pt' configs['model_load_path'] = pretrained_path model = BaseTrainer.from_checkpoint(configs) image_fn = functools.partial( preprocess_image, image_processor=model.model.image_processor, model_type=configs["model"], ) text_fn = get_text_function(model.model.tokenizer, configs["model"]) prompt = "Task: pickup the bottle on the table" text_tensor, attention_mask = text_preprocess([lang]) for step in range(MAX_STEPS): image: Image.Image = get_from_side_camera(...) image = image_fn([image]).unsqueeze(0) input_dict["rgb"] = image input_dict["text"] = text_tensor input_dict['text_mask'] = attention_mask ### if wrist camera is available wrist_image: Image.Image = get_from_wrist_camera(...) wrist_image = image_fn([wrist_image]).unsqueeze(0) input_dict["hand_rgb"] = wrist_image action = model.inference_step(input_dict)["action"] # unormalize / reproject the action if necessary from robovlms.data.data_utils import unnoramalize_action if isinstance(action, tuple): action = ( unnoramalize_action( action[0], self.configs["norm_min"], self.configs["norm_max"] ), action[1], ) else: action = unnoramalize_action( action, self.configs["norm_min"], self.configs["norm_max"] ) ``` ## Evaluation