--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: NistCodeLlama-7b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true hub_model_id: NistCodeLlama-7b sample_packing: false eval_sample_packing: false load_in_8bit: false load_in_4bit: true strict: false datasets: - path: rkreddyp/nist_800_53 ds_type: json type: field_instruction: question field_input: context field_output: answer format: |- [INST] Using the schema context below, generate a SQL query that answers the question. {input} {instruction} [/INST] dataset_prepared_path: val_set_size: 0.02 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl-nist wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 0.01 save_strategy: epoch save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# NistCodeLlama-7b This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4855 | 0.06 | 1 | 1.4808 | | 1.4522 | 0.11 | 2 | 1.4811 | | 1.4616 | 0.17 | 3 | 1.4788 | | 1.5276 | 0.23 | 4 | 1.4746 | | 1.4564 | 0.29 | 5 | 1.4662 | | 1.4837 | 0.34 | 6 | 1.4515 | | 1.4709 | 0.4 | 7 | 1.4280 | | 1.3571 | 0.46 | 8 | 1.3903 | | 1.4164 | 0.51 | 9 | 1.3363 | | 1.3257 | 0.57 | 10 | 1.2692 | | 1.2858 | 0.63 | 11 | 1.2027 | | 1.2318 | 0.69 | 12 | 1.1364 | | 1.1164 | 0.74 | 13 | 1.0595 | | 1.0984 | 0.8 | 14 | 0.9748 | | 0.9593 | 0.86 | 15 | 0.8923 | | 0.8325 | 0.91 | 16 | 0.8137 | | 0.8357 | 0.97 | 17 | 0.7426 | | 0.6483 | 1.03 | 18 | 0.6868 | | 0.7138 | 1.06 | 19 | 0.6400 | | 0.6105 | 1.11 | 20 | 0.6027 | | 0.6409 | 1.17 | 21 | 0.5686 | | 0.5206 | 1.23 | 22 | 0.5317 | | 0.521 | 1.29 | 23 | 0.4962 | | 0.4409 | 1.34 | 24 | 0.4697 | | 0.4678 | 1.4 | 25 | 0.4481 | | 0.3731 | 1.46 | 26 | 0.4303 | | 0.388 | 1.51 | 27 | 0.4161 | | 0.3463 | 1.57 | 28 | 0.4085 | | 0.3699 | 1.63 | 29 | 0.4035 | | 0.3673 | 1.69 | 30 | 0.3992 | | 0.4485 | 1.74 | 31 | 0.3962 | | 0.3855 | 1.8 | 32 | 0.3929 | | 0.3249 | 1.86 | 33 | 0.3887 | | 0.3528 | 1.91 | 34 | 0.3839 | | 0.372 | 1.97 | 35 | 0.3801 | | 0.3922 | 2.03 | 36 | 0.3768 | | 0.3783 | 2.06 | 37 | 0.3739 | | 0.31 | 2.11 | 38 | 0.3721 | | 0.275 | 2.17 | 39 | 0.3699 | | 0.338 | 2.23 | 40 | 0.3665 | | 0.3238 | 2.29 | 41 | 0.3633 | | 0.3382 | 2.34 | 42 | 0.3597 | | 0.3467 | 2.4 | 43 | 0.3567 | | 0.3494 | 2.46 | 44 | 0.3541 | | 0.3431 | 2.51 | 45 | 0.3533 | | 0.3433 | 2.57 | 46 | 0.3522 | | 0.304 | 2.63 | 47 | 0.3491 | | 0.3098 | 2.69 | 48 | 0.3464 | | 0.279 | 2.74 | 49 | 0.3443 | | 0.3105 | 2.8 | 50 | 0.3425 | | 0.2305 | 2.86 | 51 | 0.3414 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0