--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - doc_lay_net-small metrics: - precision - recall - f1 - accuracy model-index: - name: Layoutlmv3-finetuned-DocLayNet-test results: - task: name: Token Classification type: token-classification dataset: name: doc_lay_net-small type: doc_lay_net-small config: DocLayNet_2022.08_processed_on_2023.01 split: test args: DocLayNet_2022.08_processed_on_2023.01 metrics: - name: Precision type: precision value: 0.6647646219686163 - name: Recall type: recall value: 0.6763425253991292 - name: F1 type: f1 value: 0.6705035971223021 - name: Accuracy type: accuracy value: 0.8582839474362278 --- # Layoutlmv3-finetuned-DocLayNet-test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset. It achieves the following results on the evaluation set: - Loss: 0.8293 - Precision: 0.6648 - Recall: 0.6763 - F1: 0.6705 - Accuracy: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.5039 | 0.3660 | 250 | 1.1856 | 0.1597 | 0.2785 | 0.2030 | 0.5852 | | 0.8176 | 0.7321 | 500 | 0.6027 | 0.4143 | 0.5506 | 0.4728 | 0.8651 | | 0.5533 | 1.0981 | 750 | 0.6755 | 0.5946 | 0.6266 | 0.6102 | 0.8649 | | 0.4021 | 1.4641 | 1000 | 0.6233 | 0.6017 | 0.6646 | 0.6316 | 0.8804 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1