--- metrics: - MFCC-DTW - ZCR - Chroma Score - Spectral Score model-index: - name: SEE-2-SOUND results: - task: type: spatial-audio-generation name: Spatial Audio Generation dataset: type: rishitdagli/see-2-sound-eval name: SEE-2-SOUND Evaluation Dataset metrics: - type: MFCC-DTW value: 0.03 × 10^-3 name: AViTAR Marginal Scene Guidance - Mel-Frequency Cepstral Coefficient - Dynamic Time Warping - type: ZCR value: 0.95 name: AViTAR Marginal Scene Guidance - Zero Crossing Rate - type: Chroma value: 0.77 name: Chroma Feature - type: Spectral Score value: 0.95 name: AViTAR Marginal Scene Guidance - Spectral Score source: name: arXiv url: https://arxiv.org/abs/2406.06612 tags: - vision - audio - spatial audio - audio generation - music - art ---

SEE-2-SOUND🔊: Zero-Shot Spatial Environment-to-Spatial Sound

[**Rishit Dagli**](https://rishitdagli.com/)1 · [**Shivesh Prakash**](https://shivesh777.github.io/)1 · [**Rupert Wu**](https://www.cs.toronto.edu/~rupert/)1 · [**Houman Khosravani**](https://scholar.google.ca/citations?user=qzhk98YAAAAJ&hl=en)1,2,3 1University of Toronto    2Temerty Centre for Artificial Intelligence Research and Education in Medicine    3Sunnybrook Research Institute | | | | | |---|---|---|---| | [![Paper PDF](https://img.shields.io/badge/arXiv-See2Sound-red)](https://arxiv.org/abs/2406.06612) | [![Project Page](https://img.shields.io/badge/Project_Page-See2Sound-green)](https://see2sound.github.io) | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/rishitdagli/see-2-sound) | [![Hugging Face Paper](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Paper-yellow)](https://huggingface.co/papers/2406.06612) | This work presents **SEE-2-SOUND**, a method to generate spatial audio from images, animated images, and videos to accompany the visual content. Check out our [website](https://see2sound.github.io) to view some results of this work. ![teaser](https://raw.githubusercontent.com/see2sound/see2sound/main/assets/teaser.png) These checkpoints are meant to be used with our code: [SEE-2-SOUND](https://github.com/see2sound/see2sound). ## Installation First, install the pip package and download these checkpoints (needs Git LFS): ```sh pip install -e git+https://github.com/see2sound/see2sound.git#egg=see2sound git clone https://huggingface.co/rishitdagli/see-2-sound cd see-2-sound ``` View the full installation instructions as well a tips on dependencies in the [repository README](https://github.com/see2sound/see2sound/tree/main?tab=readme-ov-file#installation). ## Running the Models Now, we can start by making a configuration file, make a file called `config.yaml`: ```yaml codi_encoder: 'codi/codi_encoder.pth' codi_text: 'codi/codi_text.pth' codi_audio: 'codi/codi_audio.pth' codi_video: 'codi/codi_video.pth' sam: 'sam/sam.pth' # H, L or B in decreasing performance sam_size: 'H' depth: '/depth/depth.pth' # L, B, or S in decreasing performance depth_size: 'L' download: False # Change to True if your GPU has < 40 GB vRAM low_mem: False fp16: False gpu: True steps: 500 num_audios: 3 prompt: '' verbose: True ``` Now, we can start running inference: ```py import see2sound config_file_path = "config.yaml" model = see2sound.See2Sound(config_path = config_file_path) model.setup() model.run(path = "test.png", output_path = "test.wav") ``` ## More Information Feel free to take a look at the full [dcoumentation](https://github.com/see2sound/see2sound/blob/main/README.md) for extra information and tips on running the model.