--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-small.en results: [] --- # openai/whisper-small.en This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1764 - Wer: 2.9777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0179 | 10.0 | 500 | 0.1422 | 3.4691 | | 0.0006 | 20.0 | 1000 | 0.1530 | 3.0001 | | 0.0004 | 30.01 | 1500 | 0.1631 | 3.0150 | | 0.0002 | 40.01 | 2000 | 0.1672 | 2.9777 | | 0.0001 | 51.0 | 2500 | 0.1717 | 2.9703 | | 0.0001 | 61.0 | 3000 | 0.1742 | 2.9926 | | 0.0001 | 71.01 | 3500 | 0.1759 | 2.9852 | | 0.0001 | 81.01 | 4000 | 0.1764 | 2.9777 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2