--- license: other base_model: microsoft/Orca-2-13b tags: - generated_from_trainer model-index: - name: Orca-2-13B-Pygmalion-LoRA results: [] datasets: - PygmalionAI/PIPPA language: - en --- ++ This model's response was too short, so I re-trained it, check this out: https://huggingface.co/ricecake/Orca-2-13B-Pyg-and-Bluemoon [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # Orca-2-13B-Pygmalion-LoRA This LoRA adapter is a fine-tuned version of [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) on the [PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) dataset. It achieves the following results on the evaluation set: - Loss: 1.9190 ## Model description More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.0 | 1 | 3.2585 | | 1.9811 | 0.05 | 536 | 2.0113 | | 1.9507 | 0.1 | 1072 | 1.9877 | | 1.9576 | 0.15 | 1608 | 1.9766 | | 1.9308 | 0.2 | 2144 | 1.9671 | | 1.9193 | 0.25 | 2680 | 1.9597 | | 1.8522 | 0.3 | 3216 | 1.9530 | | 1.895 | 0.35 | 3752 | 1.9483 | | 1.869 | 0.4 | 4288 | 1.9432 | | 1.8664 | 0.45 | 4824 | 1.9383 | | 1.8661 | 0.5 | 5360 | 1.9347 | | 1.8576 | 0.55 | 5896 | 1.9337 | | 1.8573 | 0.6 | 6432 | 1.9286 | | 1.8665 | 0.65 | 6968 | 1.9280 | | 1.8429 | 0.7 | 7504 | 1.9243 | | 1.8621 | 0.75 | 8040 | 1.9221 | | 1.8074 | 0.8 | 8576 | 1.9209 | | 1.8199 | 0.85 | 9112 | 1.9202 | | 1.8733 | 0.9 | 9648 | 1.9193 | | 1.8387 | 0.95 | 10184 | 1.9190 | ### Framework versions - Transformers 4.35.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.7 - Tokenizers 0.14.1