# Copyright 2024 Rhymes AI. All rights reserved. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from transformers.configuration_utils import PretrainedConfig from .moe_lm import AriaMoELMConfig from .vision_encoder import AriaVisionConfig logger = logging.getLogger(__name__) # adapted from transformers.models.llava.configuration_llava.LlavaConfig class AriaConfig(PretrainedConfig): """ Configuration class for Aria model. This class handles the configuration for both vision and text components of the Aria model, as well as additional parameters for image token handling and projector mapping. Args: vision_config (AriaVisionConfig or dict): Configuration for the vision component. text_config (AriaMoELMConfig or dict): Configuration for the text component. projector_patch_to_query_dict (dict): Mapping of patch sizes to query dimensions. ignore_index (int): Index to ignore in loss calculation. image_token_index (int): Index used to represent image tokens. **kwargs: Additional keyword arguments passed to the parent class. Attributes: model_type (str): Type of the model, set to "aria". is_composition (bool): Whether the model is a composition of multiple components. ignore_index (int): Index to ignore in loss calculation. image_token_index (int): Index used to represent image tokens. projector_patch_to_query_dict (dict): Mapping of patch sizes to query dimensions. vision_config (AriaVisionConfig): Configuration for the vision component. text_config (AriaMoELMConfig): Configuration for the text component. """ model_type = "aria" is_composition = False def __init__( self, vision_config=AriaVisionConfig(), text_config=AriaMoELMConfig(), projector_patch_to_query_dict={ 1225: 128, 4900: 256, }, ignore_index=-100, image_token_index=32000, tie_word_embeddings=False, **kwargs, ): super().__init__(**kwargs) self.ignore_index = ignore_index self.image_token_index = image_token_index self.tie_word_embeddings = tie_word_embeddings attn_implementation = kwargs.pop("attn_implementation", None) # Set the default attention implementation to flash_attention_2 if not specified self._attn_implementation = ( "flash_attention_2" if attn_implementation is None else attn_implementation ) # Convert the keys and values of projector_patch_to_query_dict to integers # This ensures consistency even if they were provided as strings self.projector_patch_to_query_dict = { int(k): int(v) for k, v in projector_patch_to_query_dict.items() } if isinstance(vision_config, dict) and "model_type" in vision_config: vision_config = AriaVisionConfig(**vision_config) if attn_implementation is None: vision_attn_implementation = "flash_attention_2" elif attn_implementation == "sdpa": logger.warning( "SDPA is not supported for vit, using flash_attention_2 instead" ) vision_attn_implementation = "flash_attention_2" else: vision_attn_implementation = attn_implementation vision_config._attn_implementation = vision_attn_implementation self.vision_config = vision_config if isinstance(text_config, dict) and "model_type" in text_config: text_attn_implementation = ( "sdpa" if attn_implementation is None else attn_implementation ) text_config = AriaMoELMConfig(**text_config) text_config._attn_implementation = text_attn_implementation self.text_config = text_config # This is needed for the static kv cache self.num_hidden_layers = self.text_config.num_hidden_layers