Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1742.04 +/- 217.69
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:606f589340a4ff10980344bfc5b1c3405cf9a73a23bf549ceea03e08def151ec
|
3 |
+
size 129194
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc359855170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc359855200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc359855290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc359855320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc3598553b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc359855440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3598554d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc359855560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3598555f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc359855680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc359855710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc3598fa150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1663362453.9818287,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAXfD5Pl2AhT7Nwws/pMWTP5pLDz9Pmi0/fMaKPRoKpb/ovsQ+2tkuPnD3BL95FxM/rBcPP4Ujhj1YuGo/uAM+PScmkD+WZCK/ALYKPdB0CD9MWy6/RGrpPN+VNj9293C/YTqAv759/j70LBI/rDCLv14oPj/q19C+b1D6Plw22z9fMV0/oMQWvoLx3T5mDue+ZTiBPpwuAT0euIW//7vqvlVtkz/UWz8/OXN3vDSSsj8rorE/+qmdvZbdFb5UtyS+he8wv7/uwj00VwM/FKbSvmE6gL++ff4+MSvgv0Rraz8bJC2/lViTvwtFwL1dz1E/7DEBwB2wib+xfSc/MwLZPgdWOT9BJgy+J21+Puclo76vHqS/YoDHPpWBHr/FKS8+D/2/vioysD3jcRg/eEMFvpPYP778/xFA6RpGv7N4XT9zi38/vn3+PvQsEj+sMIu/6vNgvv9CkL8cKoW9TjAsP5nDDcAlGMW/GE0UP0xAyz3TpQM/bxOev0mpBz/XMDC/6XyCv8s67z6LQDW/WExdP/dsf77kmFA+R2ggP2CTiz7GiTO+VRrwvYpix75f9cY/c4t/P759/j70LBI/rDCLv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAFZFpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB3pFq9AAAAAMH9AMAAAAAA1quaPQAAAABw4QBAAAAAAM7eNT0AAAAAsPzrPwAAAAAbCfc9AAAAAPvs6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+XcU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm+kLvgAAAAAXqPK/AAAAAB+qgz0AAAAA67fmPwAAAABTDjw8AAAAAL0w8z8AAAAAtzEHvQAAAAAA3PK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhkWkNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGzK7L0AAAAA2B32vwAAAAARelw9AAAAAFCV/T8AAAAAlzeRvQAAAABks/w/AAAAAE7GRD0AAAAAYRX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwonbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAvcb89AAAAAMQ36L8AAAAAYGjnvQAAAAD7/Oc/AAAAAJvMTj0AAAAAW4f2PwAAAADQekw9AAAAAKBE/r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2OVj7Q9ieMAWyUTegDjAF0lEdAsDq8AEMb33V9lChoBkdAn8kw1FYuCmgHTegDaAhHQLA9Shm5Dqp1fZQoaAZHQJ1zXWVeKKpoB03oA2gIR0CwP4hzmwJPdX2UKGgGR0CcldKaoddWaAdN6ANoCEdAsEBk/RmbsnV9lChoBkdAnCRp4jbBXWgHTegDaAhHQLBDM6wMYuV1fZQoaAZHQJmuSPaL4vhoB03oA2gIR0CwRbywwCbMdX2UKGgGR0CZo6mnfl6raAdN6ANoCEdAsEgCJyhi9nV9lChoBkdAnBIA80UGmmgHTegDaAhHQLBI23R5TqB1fZQoaAZHQJkre9zwMH9oB03oA2gIR0CwS6r5ylvZdX2UKGgGR0CU8GN1yNn5aAdN6ANoCEdAsE4zN4Z/C3V9lChoBkdAlNNvwiJO32gHTegDaAhHQLBQbgtvn8t1fZQoaAZHQJOjl0U47zVoB03oA2gIR0CwUUclb/wRdX2UKGgGR0CZcY/xlQMyaAdN6ANoCEdAsFQFhy8zynV9lChoBkdAmqgt2C/XXmgHTegDaAhHQLBWlZf2K2t1fZQoaAZHQJWefJmukk9oB03oA2gIR0CwWNeObRWtdX2UKGgGR0CSh3AE+xGEaAdN6ANoCEdAsFm2p3os7XV9lChoBkdAmHx7uQZGa2gHTegDaAhHQLBcecZLqUx1fZQoaAZHQJwbZDArQPZoB03oA2gIR0CwXw/rOZ9edX2UKGgGR0CYOFRxLkCFaAdN6ANoCEdAsGFIrK/203V9lChoBkdAmijTt9hJAmgHTegDaAhHQLBiJr/bTMJ1fZQoaAZHQJvr3drO7g9oB03oA2gIR0CwZO1sUIszdX2UKGgGR0CebIqYqoZRaAdN6ANoCEdAsGdyciGFjHV9lChoBkdAnIWPIKc/dWgHTegDaAhHQLBpq2dNFjN1fZQoaAZHQJvLL6sQumJoB03oA2gIR0CwaoJX2dupdX2UKGgGR0CblylHSWqtaAdN6ANoCEdAsG1UA93bEnV9lChoBkdAlgaY3rD632gHTegDaAhHQLBv6GG21D11fZQoaAZHQJuqDgKnei1oB03oA2gIR0Cwci4S13MZdX2UKGgGR0CKXsnEVFhHaAdN6ANoCEdAsHMQKVpsXXV9lChoBkdAnyeaXOW0JGgHTegDaAhHQLB14IdELIB1fZQoaAZHQJzrPj/+85FoB03oA2gIR0CweHeC04R3dX2UKGgGR0CXil+FUQ05aAdN6ANoCEdAsHq4OTaCc3V9lChoBkdAno/EkKNQ02gHTegDaAhHQLB7mNu+AVh1fZQoaAZHQJvZ4V9F4LVoB03oA2gIR0CwfmRRqGlAdX2UKGgGR0CSG5Z3LV4HaAdN6ANoCEdAsIEHg4wRG3V9lChoBkdAlASEcbR4QmgHTegDaAhHQLCDSbYsd1d1fZQoaAZHQJPJy5nUUfxoB03oA2gIR0CwhCX2AXl9dX2UKGgGR0CcmJqioKlYaAdN6ANoCEdAsIb3cWTHKnV9lChoBkdAmtagz1schmgHTegDaAhHQLCJgaTwDvF1fZQoaAZHQJzX7rLQokRoB03oA2gIR0Cwi85mVZ9vdX2UKGgGR0CafYGG21D0aAdN6ANoCEdAsI0rF1jiGXV9lChoBkdAkb2DU3GXHGgHTegDaAhHQLCQTy8zyjJ1fZQoaAZHQJY0Mu3+dbxoB03oA2gIR0CwkujAeq7zdX2UKGgGR0CYkC0wJw85aAdN6ANoCEdAsJU5VfeDWnV9lChoBkdAmY4gnDziCWgHTegDaAhHQLCWGEH+qBF1fZQoaAZHQJ1plZMcp9ZoB03oA2gIR0CwmOKsMiKSdX2UKGgGR0CfKjIldC3PaAdN6ANoCEdAsJt1CVrylXV9lChoBkdAn3fb+98JD2gHTegDaAhHQLCdsnyd4FB1fZQoaAZHQJ4F9DUmUnpoB03oA2gIR0CwnorFn7HidX2UKGgGR0CgIsNX5nDjaAdN6ANoCEdAsKFS8cuJ13V9lChoBkdAngNZmAbyY2gHTegDaAhHQLCj4UBGQS11fZQoaAZHQJ2/f73wkPdoB03oA2gIR0Cwphp3os7NdX2UKGgGR0CUoafIS13MaAdN6ANoCEdAsKb3752yLXV9lChoBkdAmwItDYywfWgHTegDaAhHQLCpxiEQGwB1fZQoaAZHQJg2aUnogV5oB03oA2gIR0CwrFYzvZyudX2UKGgGR0CbOjJCSidraAdN6ANoCEdAsK6QaZQYUHV9lChoBkdAmYozIzWPLmgHTegDaAhHQLCvbrUb1h91fZQoaAZHQJegCa7VawFoB03oA2gIR0CwsjtJFspHdX2UKGgGR0CcTPxFy7wsaAdN6ANoCEdAsLTNBWxQi3V9lChoBkdAnDxzYukDZGgHTegDaAhHQLC3EMINVip1fZQoaAZHQJxp8HQhOgxoB03oA2gIR0Cwt/D0pVjqdX2UKGgGR0Cen3OM2m52aAdN6ANoCEdAsLqykl/pdXV9lChoBkdAnB5IJE6T4mgHTegDaAhHQLC9Q46wMYx1fZQoaAZHQJqJa9sabWpoB03oA2gIR0Cwv4auW8h+dX2UKGgGR0CdtzGz8gp0aAdN6ANoCEdAsMBhRzijtXV9lChoBkdAmU2D6FdszmgHTegDaAhHQLDDJbnHNot1fZQoaAZHQJ+T/SLIgeRoB03oA2gIR0CwxblENOM3dX2UKGgGR0CXWxbkOqecaAdN6ANoCEdAsMf+qLjxTnV9lChoBkdAmvyNoBaLXWgHTegDaAhHQLDI2iLEUCd1fZQoaAZHQJ2NXYywfQtoB03oA2gIR0Cwy6PjwQUYdX2UKGgGR0Cb+zTXJ5miaAdN6ANoCEdAsM44QJ5VwXV9lChoBkdAnLTQgLZzxWgHTegDaAhHQLDQfWLP2PF1fZQoaAZHQJx/foePq9poB03oA2gIR0Cw0V6Xa8HwdX2UKGgGR0Cf3bgNwzciaAdN6ANoCEdAsNQhD0Dlo3V9lChoBkdAnsZ/ikwevWgHTegDaAhHQLDWsdwvQF91fZQoaAZHQJveeTgVGkNoB03oA2gIR0Cw2PYE0SAZdX2UKGgGR0Cf3fWqLjxTaAdN6ANoCEdAsNnV3JPqLXV9lChoBkdAm/y7PIGQjmgHTegDaAhHQLDcoOyE+Pl1fZQoaAZHQJ/6+UKRdQhoB03oA2gIR0Cw3zCSRr8BdX2UKGgGR0Cfwq1ejVQRaAdN6ANoCEdAsOFuzgMtsnV9lChoBkdAoSAZisny/mgHTegDaAhHQLDiTAlfJFN1fZQoaAZHQJ7IAE4ecQRoB03oA2gIR0Cw5RM7MgU2dX2UKGgGR0Ce9qpjtoi+aAdN6ANoCEdAsOegEU0vXnV9lChoBkdAoRA0Ku0TlGgHTegDaAhHQLDp1W5H3Dh1fZQoaAZHQKCRMK64DtBoB03oA2gIR0Cw6qmrGR3edX2UKGgGR0Cg5YgH3UQTaAdN6ANoCEdAsO1wMw1zhnV9lChoBkdAoGWgpazNU2gHTegDaAhHQLDv/g62fCh1fZQoaAZHQKDbKz67/XJoB03oA2gIR0Cw8j4pYs/ZdX2UKGgGR0CgryO8scyWaAdN6ANoCEdAsPMb5N47inV9lChoBkdAnwOedwvQGGgHTegDaAhHQLD15tEG7jF1fZQoaAZHQJ+1UGTs6aNoB03oA2gIR0Cw+HIDYAbRdX2UKGgGR0Cg69544ZMtaAdN6ANoCEdAsPrBXfZVXHV9lChoBkdAoUXTLbHp8mgHTegDaAhHQLD7m114gRt1fZQoaAZHQKB1HuQZGaxoB03oA2gIR0Cw/l/ub7TEdX2UKGgGR0ChZNguAZsLaAdN6ANoCEdAsQGjkdV/+nV9lChoBkdAoB6bl7tzCGgHTegDaAhHQLEED0NSZSh1fZQoaAZHQKCPxGgi/wloB03oA2gIR0CxBOja0x/NdX2UKGgGR0Cg9Ti4SYgJaAdN6ANoCEdAsQesjkdWAHV9lChoBkdAoIfw1k1/D2gHTegDaAhHQLEKRfm9xqB1fZQoaAZHQJ7kP7uUliVoB03oA2gIR0CxDITsY2sJdX2UKGgGR0CgVnCH6/IsaAdN6ANoCEdAsQ1nKaG5+nVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0721c1d5c84f91f6c32e3f3f3ba65e90a037f66b986b5e2cf2c36254ae3a61
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d84554cc96bec61096701c2600e245c8f9796d4efe3b12d7aaf36ed1d2abd2a0
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc359855170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc359855200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc359855290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc359855320>", "_build": "<function ActorCriticPolicy._build at 0x7fc3598553b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc359855440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3598554d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc359855560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3598555f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc359855680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc359855710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc3598fa150>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663362453.9818287, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAXfD5Pl2AhT7Nwws/pMWTP5pLDz9Pmi0/fMaKPRoKpb/ovsQ+2tkuPnD3BL95FxM/rBcPP4Ujhj1YuGo/uAM+PScmkD+WZCK/ALYKPdB0CD9MWy6/RGrpPN+VNj9293C/YTqAv759/j70LBI/rDCLv14oPj/q19C+b1D6Plw22z9fMV0/oMQWvoLx3T5mDue+ZTiBPpwuAT0euIW//7vqvlVtkz/UWz8/OXN3vDSSsj8rorE/+qmdvZbdFb5UtyS+he8wv7/uwj00VwM/FKbSvmE6gL++ff4+MSvgv0Rraz8bJC2/lViTvwtFwL1dz1E/7DEBwB2wib+xfSc/MwLZPgdWOT9BJgy+J21+Puclo76vHqS/YoDHPpWBHr/FKS8+D/2/vioysD3jcRg/eEMFvpPYP778/xFA6RpGv7N4XT9zi38/vn3+PvQsEj+sMIu/6vNgvv9CkL8cKoW9TjAsP5nDDcAlGMW/GE0UP0xAyz3TpQM/bxOev0mpBz/XMDC/6XyCv8s67z6LQDW/WExdP/dsf77kmFA+R2ggP2CTiz7GiTO+VRrwvYpix75f9cY/c4t/P759/j70LBI/rDCLv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAFZFpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB3pFq9AAAAAMH9AMAAAAAA1quaPQAAAABw4QBAAAAAAM7eNT0AAAAAsPzrPwAAAAAbCfc9AAAAAPvs6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+XcU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm+kLvgAAAAAXqPK/AAAAAB+qgz0AAAAA67fmPwAAAABTDjw8AAAAAL0w8z8AAAAAtzEHvQAAAAAA3PK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhkWkNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGzK7L0AAAAA2B32vwAAAAARelw9AAAAAFCV/T8AAAAAlzeRvQAAAABks/w/AAAAAE7GRD0AAAAAYRX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwonbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAvcb89AAAAAMQ36L8AAAAAYGjnvQAAAAD7/Oc/AAAAAJvMTj0AAAAAW4f2PwAAAADQekw9AAAAAKBE/r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2OVj7Q9ieMAWyUTegDjAF0lEdAsDq8AEMb33V9lChoBkdAn8kw1FYuCmgHTegDaAhHQLA9Shm5Dqp1fZQoaAZHQJ1zXWVeKKpoB03oA2gIR0CwP4hzmwJPdX2UKGgGR0CcldKaoddWaAdN6ANoCEdAsEBk/RmbsnV9lChoBkdAnCRp4jbBXWgHTegDaAhHQLBDM6wMYuV1fZQoaAZHQJmuSPaL4vhoB03oA2gIR0CwRbywwCbMdX2UKGgGR0CZo6mnfl6raAdN6ANoCEdAsEgCJyhi9nV9lChoBkdAnBIA80UGmmgHTegDaAhHQLBI23R5TqB1fZQoaAZHQJkre9zwMH9oB03oA2gIR0CwS6r5ylvZdX2UKGgGR0CU8GN1yNn5aAdN6ANoCEdAsE4zN4Z/C3V9lChoBkdAlNNvwiJO32gHTegDaAhHQLBQbgtvn8t1fZQoaAZHQJOjl0U47zVoB03oA2gIR0CwUUclb/wRdX2UKGgGR0CZcY/xlQMyaAdN6ANoCEdAsFQFhy8zynV9lChoBkdAmqgt2C/XXmgHTegDaAhHQLBWlZf2K2t1fZQoaAZHQJWefJmukk9oB03oA2gIR0CwWNeObRWtdX2UKGgGR0CSh3AE+xGEaAdN6ANoCEdAsFm2p3os7XV9lChoBkdAmHx7uQZGa2gHTegDaAhHQLBcecZLqUx1fZQoaAZHQJwbZDArQPZoB03oA2gIR0CwXw/rOZ9edX2UKGgGR0CYOFRxLkCFaAdN6ANoCEdAsGFIrK/203V9lChoBkdAmijTt9hJAmgHTegDaAhHQLBiJr/bTMJ1fZQoaAZHQJvr3drO7g9oB03oA2gIR0CwZO1sUIszdX2UKGgGR0CebIqYqoZRaAdN6ANoCEdAsGdyciGFjHV9lChoBkdAnIWPIKc/dWgHTegDaAhHQLBpq2dNFjN1fZQoaAZHQJvLL6sQumJoB03oA2gIR0CwaoJX2dupdX2UKGgGR0CblylHSWqtaAdN6ANoCEdAsG1UA93bEnV9lChoBkdAlgaY3rD632gHTegDaAhHQLBv6GG21D11fZQoaAZHQJuqDgKnei1oB03oA2gIR0Cwci4S13MZdX2UKGgGR0CKXsnEVFhHaAdN6ANoCEdAsHMQKVpsXXV9lChoBkdAnyeaXOW0JGgHTegDaAhHQLB14IdELIB1fZQoaAZHQJzrPj/+85FoB03oA2gIR0CweHeC04R3dX2UKGgGR0CXil+FUQ05aAdN6ANoCEdAsHq4OTaCc3V9lChoBkdAno/EkKNQ02gHTegDaAhHQLB7mNu+AVh1fZQoaAZHQJvZ4V9F4LVoB03oA2gIR0CwfmRRqGlAdX2UKGgGR0CSG5Z3LV4HaAdN6ANoCEdAsIEHg4wRG3V9lChoBkdAlASEcbR4QmgHTegDaAhHQLCDSbYsd1d1fZQoaAZHQJPJy5nUUfxoB03oA2gIR0CwhCX2AXl9dX2UKGgGR0CcmJqioKlYaAdN6ANoCEdAsIb3cWTHKnV9lChoBkdAmtagz1schmgHTegDaAhHQLCJgaTwDvF1fZQoaAZHQJzX7rLQokRoB03oA2gIR0Cwi85mVZ9vdX2UKGgGR0CafYGG21D0aAdN6ANoCEdAsI0rF1jiGXV9lChoBkdAkb2DU3GXHGgHTegDaAhHQLCQTy8zyjJ1fZQoaAZHQJY0Mu3+dbxoB03oA2gIR0CwkujAeq7zdX2UKGgGR0CYkC0wJw85aAdN6ANoCEdAsJU5VfeDWnV9lChoBkdAmY4gnDziCWgHTegDaAhHQLCWGEH+qBF1fZQoaAZHQJ1plZMcp9ZoB03oA2gIR0CwmOKsMiKSdX2UKGgGR0CfKjIldC3PaAdN6ANoCEdAsJt1CVrylXV9lChoBkdAn3fb+98JD2gHTegDaAhHQLCdsnyd4FB1fZQoaAZHQJ4F9DUmUnpoB03oA2gIR0CwnorFn7HidX2UKGgGR0CgIsNX5nDjaAdN6ANoCEdAsKFS8cuJ13V9lChoBkdAngNZmAbyY2gHTegDaAhHQLCj4UBGQS11fZQoaAZHQJ2/f73wkPdoB03oA2gIR0Cwphp3os7NdX2UKGgGR0CUoafIS13MaAdN6ANoCEdAsKb3752yLXV9lChoBkdAmwItDYywfWgHTegDaAhHQLCpxiEQGwB1fZQoaAZHQJg2aUnogV5oB03oA2gIR0CwrFYzvZyudX2UKGgGR0CbOjJCSidraAdN6ANoCEdAsK6QaZQYUHV9lChoBkdAmYozIzWPLmgHTegDaAhHQLCvbrUb1h91fZQoaAZHQJegCa7VawFoB03oA2gIR0CwsjtJFspHdX2UKGgGR0CcTPxFy7wsaAdN6ANoCEdAsLTNBWxQi3V9lChoBkdAnDxzYukDZGgHTegDaAhHQLC3EMINVip1fZQoaAZHQJxp8HQhOgxoB03oA2gIR0Cwt/D0pVjqdX2UKGgGR0Cen3OM2m52aAdN6ANoCEdAsLqykl/pdXV9lChoBkdAnB5IJE6T4mgHTegDaAhHQLC9Q46wMYx1fZQoaAZHQJqJa9sabWpoB03oA2gIR0Cwv4auW8h+dX2UKGgGR0CdtzGz8gp0aAdN6ANoCEdAsMBhRzijtXV9lChoBkdAmU2D6FdszmgHTegDaAhHQLDDJbnHNot1fZQoaAZHQJ+T/SLIgeRoB03oA2gIR0CwxblENOM3dX2UKGgGR0CXWxbkOqecaAdN6ANoCEdAsMf+qLjxTnV9lChoBkdAmvyNoBaLXWgHTegDaAhHQLDI2iLEUCd1fZQoaAZHQJ2NXYywfQtoB03oA2gIR0Cwy6PjwQUYdX2UKGgGR0Cb+zTXJ5miaAdN6ANoCEdAsM44QJ5VwXV9lChoBkdAnLTQgLZzxWgHTegDaAhHQLDQfWLP2PF1fZQoaAZHQJx/foePq9poB03oA2gIR0Cw0V6Xa8HwdX2UKGgGR0Cf3bgNwzciaAdN6ANoCEdAsNQhD0Dlo3V9lChoBkdAnsZ/ikwevWgHTegDaAhHQLDWsdwvQF91fZQoaAZHQJveeTgVGkNoB03oA2gIR0Cw2PYE0SAZdX2UKGgGR0Cf3fWqLjxTaAdN6ANoCEdAsNnV3JPqLXV9lChoBkdAm/y7PIGQjmgHTegDaAhHQLDcoOyE+Pl1fZQoaAZHQJ/6+UKRdQhoB03oA2gIR0Cw3zCSRr8BdX2UKGgGR0Cfwq1ejVQRaAdN6ANoCEdAsOFuzgMtsnV9lChoBkdAoSAZisny/mgHTegDaAhHQLDiTAlfJFN1fZQoaAZHQJ7IAE4ecQRoB03oA2gIR0Cw5RM7MgU2dX2UKGgGR0Ce9qpjtoi+aAdN6ANoCEdAsOegEU0vXnV9lChoBkdAoRA0Ku0TlGgHTegDaAhHQLDp1W5H3Dh1fZQoaAZHQKCRMK64DtBoB03oA2gIR0Cw6qmrGR3edX2UKGgGR0Cg5YgH3UQTaAdN6ANoCEdAsO1wMw1zhnV9lChoBkdAoGWgpazNU2gHTegDaAhHQLDv/g62fCh1fZQoaAZHQKDbKz67/XJoB03oA2gIR0Cw8j4pYs/ZdX2UKGgGR0CgryO8scyWaAdN6ANoCEdAsPMb5N47inV9lChoBkdAnwOedwvQGGgHTegDaAhHQLD15tEG7jF1fZQoaAZHQJ+1UGTs6aNoB03oA2gIR0Cw+HIDYAbRdX2UKGgGR0Cg69544ZMtaAdN6ANoCEdAsPrBXfZVXHV9lChoBkdAoUXTLbHp8mgHTegDaAhHQLD7m114gRt1fZQoaAZHQKB1HuQZGaxoB03oA2gIR0Cw/l/ub7TEdX2UKGgGR0ChZNguAZsLaAdN6ANoCEdAsQGjkdV/+nV9lChoBkdAoB6bl7tzCGgHTegDaAhHQLEED0NSZSh1fZQoaAZHQKCPxGgi/wloB03oA2gIR0CxBOja0x/NdX2UKGgGR0Cg9Ti4SYgJaAdN6ANoCEdAsQesjkdWAHV9lChoBkdAoIfw1k1/D2gHTegDaAhHQLEKRfm9xqB1fZQoaAZHQJ7kP7uUliVoB03oA2gIR0CxDITsY2sJdX2UKGgGR0CgVnCH6/IsaAdN6ANoCEdAsQ1nKaG5+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (729 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1742.037449144863, "std_reward": 217.68521411756538, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-16T22:25:33.528289"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b2d12c394ed323400ee7fc220eac4ced4730185a37bf115609ca632d79c8a0
|
3 |
+
size 2763
|