wandb: entity: r-ap run_id: tx78bpg1 experiment: name: muse-multi project: muse-prod output_dir: output/ max_train_examples: 28500 max_eval_examples: 1000 save_every: 1000 eval_every: 1000 generate_every: 400 log_every: 50 log_grad_norm_every: 100000000 resume_from_checkpoint: latest resume_lr_scheduler: true checkpoints_total_limit: 4 logging_dir: output/logs model: vq_model: type: vqgan text_encoder: type: clip transformer: vocab_size: 8256 hidden_size: 1024 intermediate_size: 2816 num_hidden_layers: 22 num_attention_heads: 16 in_channels: 768 block_out_channels: - 768 block_has_attention: - true block_num_heads: 12 num_res_blocks: 3 res_ffn_factor: 4 patch_size: 1 encoder_hidden_size: 768 add_cross_attention: true project_encoder_hidden_states: true codebook_size: 8192 num_vq_tokens: 256 initializer_range: 0.02 norm_type: rmsnorm layer_norm_eps: 1.0e-06 ln_elementwise_affine: true use_encoder_layernorm: false use_bias: false hidden_dropout: 0.0 attention_dropout: 0.0 use_codebook_size_for_output: true use_empty_embeds_for_uncond: true add_cond_embeds: true cond_embed_dim: 768 add_micro_cond_embeds: true micro_cond_encode_dim: 256 micro_cond_embed_dim: 1280 force_down_up_sample: true architecture: uvit enable_xformers_memory_efficient_attention: true dataset: preprocessing: max_seq_length: 77 resolution: 256 optimizer: name: adamw params: learning_rate: 0.0001 scale_lr: false beta1: 0.9 beta2: 0.999 weight_decay: 0.01 epsilon: 1.0e-08 lr_scheduler: scheduler: constant_with_warmup params: learning_rate: ${optimizer.params.learning_rate} warmup_steps: 100 training: gradient_accumulation_steps: 1 batch_size: 20 mixed_precision: 'no' enable_tf32: true use_ema: true ema_decay: 0.9999 ema_update_after_step: 0 ema_update_every: 1 seed: 13399 max_train_steps: 20000 overfit_one_batch: false cond_dropout_prob: 0.1 min_masking_rate: 0.0 label_smoothing: 0.1 max_grad_norm: null guidance_scale: 8 generation_timesteps: 16 use_soft_code_target: false use_stochastic_code: false soft_code_temp: 1.0 mask_schedule: cosine mask_contiguous_region_prob: 0.15 config: configs/segmentation.yaml