{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc43fd74660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668071822226965293, "learning_rate": 1e-05, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPuT4tYjjaPGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAax5r4qH9g+eq1Ovs+xM781I/m++KoXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbTfBN02fjT+UhpRSlIwBbJRLxYwBdJRHQK9Qvp5/smh1fZQoaAZoCWgPQwhxkuaPaT9LwJSGlFKUaBVLrWgWR0CvU0radtl7dX2UKGgGaAloD0MI8gcDz71XPMCUhpRSlGgVS5doFkdAr1WL4593KXV9lChoBmgJaA9DCKPIWkOpNTzAlIaUUpRoFUuHaBZHQK9XimdiDul1fZQoaAZoCWgPQwghPUUOkSZlwJSGlFKUaBVNAwFoFkdAr1tox8D0UXV9lChoBmgJaA9DCOAQqtTsZ0XAlIaUUpRoFUujaBZHQK9d0s9SuQp1fZQoaAZoCWgPQwi/mZguxDtnwJSGlFKUaBVLhmgWR0CvX+H8jzI4dX2UKGgGaAloD0MI2XqGcMwyEMCUhpRSlGgVS49oFkdAr2IGHi3ocXV9lChoBmgJaA9DCNRi8DDtzzHAlIaUUpRoFUthaBZHQK9jhAZbY9R1fZQoaAZoCWgPQwjvj/eqlSkJQJSGlFKUaBVLxGgWR0CvZmhtUGVzdX2UKGgGaAloD0MI5SuBlNg1+r+UhpRSlGgVS3poFkdAr2g2KwY+CHV9lChoBmgJaA9DCEOQgxJm61PAlIaUUpRoFUtVaBZHQK9pfG9YfXB1fZQoaAZoCWgPQwgkRs8tdNtHwJSGlFKUaBVLzWgWR0CvbIobn5i3dX2UKGgGaAloD0MIYAK37uZ5SsCUhpRSlGgVS49oFkdAr266NfgJkXV9lChoBmgJaA9DCJbNHJJaYkDAlIaUUpRoFUuyaBZHQK9xag6EJ0J1fZQoaAZoCWgPQwhuwOeHEYZCwJSGlFKUaBVLTmgWR0CvcqFWGRFJdX2UKGgGaAloD0MIAHMtWoAyN0CUhpRSlGgVTegDaBZHQK+Bj0tAcDN1fZQoaAZoCWgPQwhGfCdmvSxAwJSGlFKUaBVLfmgWR0Cvg3IjGDL9dX2UKGgGaAloD0MINxsrMc/2M8CUhpRSlGgVS7JoFkdAr4YgzabnYHV9lChoBmgJaA9DCAN4CyQoZjnAlIaUUpRoFUt2aBZHQK+H69Gqgh91fZQoaAZoCWgPQwhjsyPVd3YswJSGlFKUaBVLaWgWR0CviYfwy6+WdX2UKGgGaAloD0MIbjSAt0CMQ8CUhpRSlGgVS8BoFkdAr4xt0o0ALnV9lChoBmgJaA9DCDKqDONu4C/AlIaUUpRoFUtaaBZHQK+NxRv3rUt1fZQoaAZoCWgPQwjmXIqryuxHwJSGlFKUaBVLbWgWR0Cvj2aij+JhdX2UKGgGaAloD0MIVYodjUMzScCUhpRSlGgVS2poFkdAr5D5r30wrXV9lChoBmgJaA9DCHGQEOWLsmDAlIaUUpRoFUuMaBZHQK+a/FtKqXF1fZQoaAZoCWgPQwjzjlN0JLxQwJSGlFKUaBVLmWgWR0CvnUT6JqIrdX2UKGgGaAloD0MIOEiI8gVIYMCUhpRSlGgVS8poFkdAr6BAA80UGnV9lChoBmgJaA9DCFWKHY1D02vAlIaUUpRoFU2IA2gWR0CvrYg6EJ0GdX2UKGgGaAloD0MI84++SdNQO8CUhpRSlGgVS6loFkdAr7AHsVtXP3V9lChoBmgJaA9DCOXTY1sGzCbAlIaUUpRoFUu1aBZHQK+ythPTG5t1fZQoaAZoCWgPQwj1nsppT/hTwJSGlFKUaBVLY2gWR0CvtC9TxXnydX2UKGgGaAloD0MIsOdrlssLY8CUhpRSlGgVS31oFkdAr7YJ/G2kSHV9lChoBmgJaA9DCDvGFRdHOWHAlIaUUpRoFU0dAWgWR0CvukCL2pQ2dX2UKGgGaAloD0MI1cxaCkjtTMCUhpRSlGgVS4loFkdAr7xHwZwXInV9lChoBmgJaA9DCDWyKy0jSTzAlIaUUpRoFUueaBZHQK++olzltCR1fZQoaAZoCWgPQwh0Iywq4vZawJSGlFKUaBVLtWgWR0CvwVPIwM6SdX2UKGgGaAloD0MIP+QtV7+zYMCUhpRSlGgVS7FoFkdAr8P1XYDkl3V9lChoBmgJaA9DCC5VaYtrNEbAlIaUUpRoFUuzaBZHQK/GkTq0MPV1fZQoaAZoCWgPQwi6FFeVfY87wJSGlFKUaBVL1GgWR0CvybH/T9bYdX2UKGgGaAloD0MI+3Q8ZqDOQcCUhpRSlGgVS9JoFkdAr8zP99+gDnV9lChoBmgJaA9DCDAPmfIhZDHAlIaUUpRoFUtpaBZHQK/OakrPMSt1fZQoaAZoCWgPQwh/TkF+NsIhwJSGlFKUaBVLamgWR0Cv0AGKIi1RdX2UKGgGaAloD0MIveDTnLw4EMCUhpRSlGgVS3poFkdAr9HRbwBo3HV9lChoBmgJaA9DCEWduYeEBUrAlIaUUpRoFUueaBZHQK/UJfTkQwt1fZQoaAZoCWgPQwigFoOH6c5mwJSGlFKUaBVLjWgWR0Cv1jwrtmcwdX2UKGgGaAloD0MI+grSjEWfP8CUhpRSlGgVS8JoFkdAr9kiCcwxnHV9lChoBmgJaA9DCFkUdlH0oA7AlIaUUpRoFUuTaBZHQK/bUTTvy9V1fZQoaAZoCWgPQwhTCU/o9RZawJSGlFKUaBVLc2gWR0Cv3QyoXKr8dX2UKGgGaAloD0MIi8HDtG9CRcCUhpRSlGgVS6NoFkdAr99zxXnyNHV9lChoBmgJaA9DCPxtT5DYnjnAlIaUUpRoFUu9aBZHQK/iQUbDMvB1fZQoaAZoCWgPQwiTizGwjsdBwJSGlFKUaBVLb2gWR0Cv67zuv2XcdX2UKGgGaAloD0MIaYzWUdVbWMCUhpRSlGgVS9NoFkdAr+7mVqveQHV9lChoBmgJaA9DCBkg0QSKrlvAlIaUUpRoFUu4aBZHQK/xoGFBY3h1fZQoaAZoCWgPQwjoFU890pdSwJSGlFKUaBVLjWgWR0Cv87hXS0BwdX2UKGgGaAloD0MI1T2yuWoMTcCUhpRSlGgVS3RoFkdAr/WJPsRg7nV9lChoBmgJaA9DCJAty9dlEDvAlIaUUpRoFUuYaBZHQK/3ziF0xM51fZQoaAZoCWgPQwgWp1oLsxAxQJSGlFKUaBVLZmgWR0Cv+VnNPgvUdX2UKGgGaAloD0MIP+YDAp2qXsCUhpRSlGgVS6poFkdAr/vcbDMvAXV9lChoBmgJaA9DCN7KEp1lLibAlIaUUpRoFUt8aBZHQK/9su14Pf91fZQoaAZoCWgPQwhIizOGOSFOwJSGlFKUaBVL7GgWR0CwAJl5rxiHdX2UKGgGaAloD0MIJ/kRv2LkWcCUhpRSlGgVS7hoFkdAsAH8vxpco3V9lChoBmgJaA9DCBPXMa64mk3AlIaUUpRoFUupaBZHQLADOtoi9qV1fZQoaAZoCWgPQwgPttjtsxRCQJSGlFKUaBVLvmgWR0CwBKN6Tnq3dX2UKGgGaAloD0MIwap6+Z1aVMCUhpRSlGgVS11oFkdAsAVUbo8p1HV9lChoBmgJaA9DCG6/fLJi4DzAlIaUUpRoFUt6aBZHQLAGOFK02Lp1fZQoaAZoCWgPQwgrajANwy9XwJSGlFKUaBVLlWgWR0CwB1YnBtUGdX2UKGgGaAloD0MIRdjw9EoKUsCUhpRSlGgVS6ZoFkdAsAiTM6ij+XV9lChoBmgJaA9DCBLCo40jT13AlIaUUpRoFUuMaBZHQLAJpcSoOx11fZQoaAZoCWgPQwiH4SNiSjA4wJSGlFKUaBVLfGgWR0CwCphLTQVsdX2UKGgGaAloD0MIGHlZEwseRcCUhpRSlGgVS49oFkdAsAuvBuXNT3V9lChoBmgJaA9DCMOgTKPJCUTAlIaUUpRoFUuqaBZHQLAM8ELH+611fZQoaAZoCWgPQwjLviuC/205QJSGlFKUaBVLrWgWR0CwDjHB+F10dX2UKGgGaAloD0MIkxraAGziWcCUhpRSlGgVS6xoFkdAsA95WjoIOnV9lChoBmgJaA9DCNVCyeTUekPAlIaUUpRoFUvIaBZHQLAQ8g0j1PF1fZQoaAZoCWgPQwjaVrPO+M42QJSGlFKUaBVLcmgWR0CwEcu63AmBdX2UKGgGaAloD0MI4pF4eTpBRcCUhpRSlGgVS6NoFkdAsBMKrn1WbXV9lChoBmgJaA9DCLpqniPyOUHAlIaUUpRoFUusaBZHQLAUT0SRKYl1fZQoaAZoCWgPQwinzqPi/7IwQJSGlFKUaBVLxGgWR0CwFcymALApdX2UKGgGaAloD0MIEjElkuhNTECUhpRSlGgVTegDaBZHQLAhGQYUFjd1fZQoaAZoCWgPQwj6er5muUwYwJSGlFKUaBVLgmgWR0CwIhTJU5uJdX2UKGgGaAloD0MIuMoTCLsyYsCUhpRSlGgVS5toFkdAsCM9Mcp9Z3V9lChoBmgJaA9DCP6bFye+xjdAlIaUUpRoFUuHaBZHQLAkPoESuhd1fZQoaAZoCWgPQwibyw2GOvwjwJSGlFKUaBVLi2gWR0CwJUg62fCidX2UKGgGaAloD0MIBoGVQ4vTUcCUhpRSlGgVS3xoFkdAsCY1mz0HyHV9lChoBmgJaA9DCIGTbeAOdD/AlIaUUpRoFUubaBZHQLAnX0YTCch1fZQoaAZoCWgPQwhSZRh3g0gQwJSGlFKUaBVLXWgWR0CwKBq0Y0l7dX2UKGgGaAloD0MIJbA5B88gOsCUhpRSlGgVS5doFkdAsCk9W+49YHV9lChoBmgJaA9DCDSGOUGbuEbAlIaUUpRoFUt1aBZHQLAqGfvnbIt1fZQoaAZoCWgPQwisqSwKOylkwJSGlFKUaBVLbGgWR0CwKumCROk+dX2UKGgGaAloD0MIVRhbCHLeQ8CUhpRSlGgVS5xoFkdAsCwU56t1ZHV9lChoBmgJaA9DCHNLqyFxjzHAlIaUUpRoFUuBaBZHQLAtDyon8bd1fZQoaAZoCWgPQwh7L75oj4ckwJSGlFKUaBVLjWgWR0CwLhs1sLv1dX2UKGgGaAloD0MIdOygEtdbSsCUhpRSlGgVS6xoFkdAsC9dAVwgknV9lChoBmgJaA9DCG2pg7weXkzAlIaUUpRoFUuOaBZHQLAwagVoHs11fZQoaAZoCWgPQwgFiIIZUwgmwJSGlFKUaBVLoWgWR0CwMiebutwKdX2UKGgGaAloD0MIuM6/XfbLD0CUhpRSlGgVS6loFkdAsDQq8pTdcnV9lChoBmgJaA9DCGivPh76AmjAlIaUUpRoFUvMaBZHQLA2GNrTH811fZQoaAZoCWgPQwgBpDZxcrc6QJSGlFKUaBVN6ANoFkdAsD2ELLIPsnV9lChoBmgJaA9DCOoJSzygbOu/lIaUUpRoFU3oA2gWR0CwRPt8Rcu8dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1000, "n_steps": 5000, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}