--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-recruitment-eval-2 results: [] --- # roberta-base-finetuned-recruitment-eval-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1002 - Precision: 0.8023 - Recall: 0.8531 - F1: 0.8269 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.3547 | 0.0 | 0.0 | 0.0 | 0.9127 | | No log | 2.0 | 30 | 0.2395 | 0.3442 | 0.2978 | 0.3194 | 0.9305 | | No log | 3.0 | 45 | 0.1640 | 0.5315 | 0.6253 | 0.5746 | 0.9576 | | No log | 4.0 | 60 | 0.1231 | 0.6518 | 0.7871 | 0.7131 | 0.9606 | | No log | 5.0 | 75 | 0.1076 | 0.7409 | 0.8208 | 0.7788 | 0.9708 | | No log | 6.0 | 90 | 0.1220 | 0.6817 | 0.8342 | 0.7503 | 0.9658 | | No log | 7.0 | 105 | 0.1030 | 0.7850 | 0.8167 | 0.8005 | 0.9757 | | No log | 8.0 | 120 | 0.1053 | 0.7769 | 0.8167 | 0.7963 | 0.9745 | | No log | 9.0 | 135 | 0.1002 | 0.8023 | 0.8531 | 0.8269 | 0.9760 | | No log | 10.0 | 150 | 0.1100 | 0.7689 | 0.8477 | 0.8064 | 0.9724 | | No log | 11.0 | 165 | 0.1061 | 0.7757 | 0.8531 | 0.8126 | 0.9731 | | No log | 12.0 | 180 | 0.1081 | 0.7748 | 0.8531 | 0.8121 | 0.9734 | | No log | 13.0 | 195 | 0.1095 | 0.7761 | 0.8504 | 0.8116 | 0.9737 | | No log | 14.0 | 210 | 0.1124 | 0.7800 | 0.8504 | 0.8137 | 0.9743 | | No log | 15.0 | 225 | 0.1117 | 0.7800 | 0.8504 | 0.8137 | 0.9746 | ### Framework versions - Transformers 4.27.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3