--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qag_tweetqa pipeline_tag: text2text-generation tags: - questions and answers generation widget: - text: " Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Questions & Answers Generation Example 1" model-index: - name: lmqg/t5-base-tweetqa-qag-np results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qag_tweetqa type: default args: default metrics: - name: BLEU4 type: bleu4 value: 0.13399772044578695 - name: ROUGE-L type: rouge-l value: 0.3723033124655649 - name: METEOR type: meteor value: 0.3113835606745017 - name: BERTScore type: bertscore value: 0.9079808960852451 - name: MoverScore type: moverscore value: 0.6226022717045362 - name: QAAlignedF1Score (BERTScore) type: qa_aligned_f1_score_bertscore value: 0.9239789708710728 - name: QAAlignedF1Score (MoverScore) type: qa_aligned_f1_score_moverscore value: 0.6483101074792541 --- # Model Card of `lmqg/t5-base-tweetqa-qag-np` This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). This model is fine-tuned on the end-to-end question and answer generation. Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)). ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ``` ### Overview - **Language model:** [t5-base](https://huggingface.co/t5-base) - **Language:** en - **Training data:** [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language='en', model='lmqg/t5-base-tweetqa-qag-np') # model prediction question = model.generate_qa(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"]) ``` - With `transformers` ```python from transformers import pipeline # initialize model pipe = pipeline("text2text-generation", 'lmqg/t5-base-tweetqa-qag-np') # question generation question = pipe(' Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.') ``` ## Evaluation Metrics ### Metrics | Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link | |:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:| | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | default | 0.134 | 0.372 | 0.311 | 0.908 | 0.623 | [link](https://huggingface.co/lmqg/t5-base-tweetqa-qag-np/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_tweetqa.default.json) | ### Metrics (QAG) | Dataset | Type | QA Aligned F1 Score (BERTScore) | QA Aligned F1 Score (MoverScore) | Link | |:--------|:-----|--------------------------------:|---------------------------------:|-----:| | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | default | 0.924 | 0.648 | [link](https://huggingface.co/lmqg/t5-base-tweetqa-qag-np/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_tweetqa.default.json) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_tweetqa - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: None - model: t5-base - max_length: 256 - max_length_output: 128 - epoch: 15 - batch: 32 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-base-tweetqa-qag-np/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```