from flask import Flask, request, render_template from transformers import T5ForConditionalGeneration, T5Tokenizer import torch app = Flask(__name__) # Load the fine-tuned model and tokenizer model = T5ForConditionalGeneration.from_pretrained('./finetuned_t5') tokenizer = T5Tokenizer.from_pretrained('./finetuned_t5') model.eval() @app.route('/', methods=['GET', 'POST']) def index(): answer = "" if request.method == 'POST': question = request.form['question'] input_text = f"question: {question.strip()}" inputs = tokenizer(input_text, max_length=128, truncation=True, padding=True, return_tensors="pt") outputs = model.generate( inputs['input_ids'], max_length=64, num_beams=4, early_stopping=True, no_repeat_ngram_size=2 ) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return render_template('index.html', answer=answer) if __name__ == '__main__': app.run(debug=True)