Usage Via Transformers: Example
#11
by
ep5000
- opened
Hi,
I see in the "Use this model" dropdown is shows how to load the model via transformers but is there a complete example demonstrating performing inference on an image via transformers?
After some additional research the following is an example of using this modal via Transformers (i.e. not via VLLM):
# Load model directly import torch from PIL import Image from transformers import AutoProcessor, AutoModelForImageTextToText from qwen_vl_utils import process_vision_info device = torch.device("cuda") model = AutoModelForImageTextToText.from_pretrained( "reducto/RolmOCR", torch_dtype="auto", device_map="auto", trust_remote_code=True) processor = AutoProcessor.from_pretrained("reducto/RolmOCR", trust_remote_code=True, use_fast=False, device_map="auto") #model = model.eval().cuda() #image = Image.open(sys.argv[1]) question = f"Extract the text from this image" messages = [ { "role": "user", "content": [ {"type": "image", "image": "/home/myuser/image1.jpg"}, {"type": "text", "text": question}, ], }, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text)