--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-domains results: [] --- # roberta-finetuned-domains This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8502 - F1: 0.3317 - Roc Auc: 0.5777 - Accuracy: 0.1883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.2412 | 1.0 | 24797 | 0.8502 | 0.3317 | 0.5777 | 0.1883 | | 0.129 | 2.0 | 49594 | 0.9576 | 0.3219 | 0.5724 | 0.1962 | | 0.1072 | 3.0 | 74391 | 1.2442 | 0.3260 | 0.5718 | 0.1906 | | 0.0422 | 4.0 | 99188 | 1.4241 | 0.3259 | 0.5723 | 0.1927 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3