--- base_model: facebook/bart-large-mnli datasets: - reddgr/nli-chatbot-prompt-categorization library_name: transformers license: mit tags: - generated_from_keras_callback model-index: - name: zero-shot-prompt-classifier-bart-ft results: [] --- # zero-shot-prompt-classifier-bart-ft This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) dataset. The purpose of the model is to help classify chatbot prompts into categories that are relevant in the context of working with LLM conversational tools: coding assistance, language assistance, role play, creative writing, general knowledge questions... The model is fine-tuned and tested on the natural language inference (NLI) dataset [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) Below is a confusion matrix calculated on zero-shot inferences for the 10 most popular categories in the Test split of [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) at the time of the first model upload. The classification with the base model on the same small test dataset is shown for comparison: ![Zero-shot prompt classification confusion matrix for reddgr/zero-shot-prompt-classifier-bart-ft](https://talkingtochatbots.com/wp-content/uploads/2024/12/zero-shot-prompt-classification-comparison-57-accuracy.png) The current version of the fine-tuned model outperforms the base model [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) by 23 percentage points (57% accuracy vs 34% accuracy) in a test set with 10 candidate zero-shot classes (the most frequent categories in the test split of [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization)). The chart below compares the results for the 12 most popular candidate classes in the Test split, where the base model's zero-shot accuracy is outperformed by 25 percentage points: ![Zero-shot prompt classification confusion matrix for reddgr/zero-shot-prompt-classifier-bart-ft](https://talkingtochatbots.com/wp-content/uploads/2024/12/zero-shot-prompt-classification-comparison-12-classes-56-accuracy.png) The dataset and the model are continously updated as they assist with content publishing on my website [Talking to Chatbots](https://talkingtochatbots) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.9969 | 0.5490 | 0.9182 | 0.6225 | 0 | | 0.7647 | 0.6601 | 1.0025 | 0.5441 | 1 | | 0.6465 | 0.7157 | 1.1472 | 0.5392 | 2 | | 0.5849 | 0.7418 | 1.1974 | 0.5049 | 3 | | 0.4474 | 0.7843 | 1.5942 | 0.4657 | 4 | ### Framework versions - Transformers 4.44.2 - TensorFlow 2.18.0-dev20240717 - Datasets 2.21.0 - Tokenizers 0.19.1