--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - razhan/common_voice_ckb_16 metrics: - wer model-index: - name: whisper-base-ckb results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: razhan/common_voice_ckb_16 type: razhan/common_voice_ckb_16 metrics: - name: Wer type: wer value: 0.12623194275685162 --- # whisper-base-ckb This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the razhan/common_voice_ckb_16 dataset. It achieves the following results on the evaluation set: - Loss: 0.0641 - Wer: 0.1262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 192 - eval_batch_size: 128 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - total_train_batch_size: 1152 - total_eval_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3434 | 1.09 | 100 | 0.3840 | 0.6054 | | 0.2089 | 2.17 | 200 | 0.2654 | 0.4740 | | 0.167 | 3.26 | 300 | 0.2246 | 0.4190 | | 0.1452 | 4.35 | 400 | 0.1964 | 0.3803 | | 0.1287 | 5.43 | 500 | 0.1788 | 0.3542 | | 0.1163 | 6.52 | 600 | 0.1650 | 0.3326 | | 0.1068 | 7.61 | 700 | 0.1560 | 0.3155 | | 0.1015 | 8.7 | 800 | 0.1489 | 0.3059 | | 0.0968 | 9.78 | 900 | 0.1440 | 0.2954 | | 0.0939 | 10.87 | 1000 | 0.1420 | 0.2918 | | 0.0919 | 11.96 | 1100 | 0.1315 | 0.2742 | | 0.0839 | 13.04 | 1200 | 0.1217 | 0.2597 | | 0.0713 | 14.13 | 1300 | 0.1132 | 0.2371 | | 0.0687 | 15.22 | 1400 | 0.1091 | 0.2372 | | 0.0647 | 16.3 | 1500 | 0.1022 | 0.2173 | | 0.059 | 17.39 | 1600 | 0.0967 | 0.2043 | | 0.0539 | 18.48 | 1700 | 0.0897 | 0.1929 | | 0.0518 | 19.57 | 1800 | 0.0827 | 0.1718 | | 0.0495 | 20.65 | 1900 | 0.0787 | 0.1667 | | 0.0444 | 21.74 | 2000 | 0.0718 | 0.1469 | | 0.0392 | 22.83 | 2100 | 0.0671 | 0.1368 | | 0.0335 | 23.91 | 2200 | 0.0645 | 0.1263 | | 0.0292 | 25.0 | 2300 | 0.0641 | 0.1262 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0