--- license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: MetaMath-Qwen2.5-0.5b-PRM results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-0.5B bf16: auto dataset_prepared_path: /training/data/prepared datasets: - conversation: llama3 path: RLHFlow/Mistral-PRM-Data split: train train_on_split: train type: sharegpt flash_attention: true fp16: false gradient_accumulation_steps: 4 gradient_checkpointing: true hub_model_id: rawsh/MetaMath-Qwen2.5-0.5b-PRM hub_strategy: every_save learning_rate: 2.0e-06 load_in_4bit: false load_in_8bit: false logging_steps: 2 lr_scheduler: cosine max_grad_norm: 1.0 micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: paged_adamw_32bit output_dir: /training/prm pad_to_sequence_len: true push_to_hub: true sample_packing: true save_safetensors: true save_strategy: epoch save_total_limit: 4 sequence_len: 8192 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_name: qwen2.5-0.5b-bs32_lr2e-6_prm wandb_project: preference-models warmup_ratio: 0.05 weight_decay: 0.0 ```

[Visualize in Weights & Biases](https://wandb.ai/dankgpt/preference-models/runs/eqqhapl0) # MetaMath-Qwen2.5-0.5b-PRM This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 214 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1