--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.4244391971664699 --- # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6467 - Wer Ortho: 0.4534 - Wer: 0.4244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1212 | 1.79 | 50 | 0.5863 | 0.4584 | 0.4085 | | 0.0775 | 3.57 | 100 | 0.5957 | 0.4442 | 0.3991 | | 0.0415 | 5.36 | 150 | 0.6280 | 0.4399 | 0.4091 | | 0.0208 | 7.14 | 200 | 0.6467 | 0.4534 | 0.4244 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0