import pandas as pd import pickle from typing import Dict, List, Any import numpy as np import os # set device class EndpointHandler(): def __init__(self, path=""): # load the optimized model pathb = os.path.join(path,"./churn.pkl") self.pipe = pd.read_pickle(pathb) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. A string representing what the label/class is """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) df = pd.DataFrame(data) df["TotalCharges"] = df["TotalCharges"].replace(" ", np.nan, regex=False).astype(float) df = df.drop(columns=["customerID"]) df = df.drop(columns=["Churn"]) # run inference pipeline pred = self.pipe.predict(df) # postprocess the prediction return {"pred": pred}