--- license: mit base_model: dslim/bert-large-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-adam results: [] datasets: - conll2003 - rungalileo/mit_movies - hyperhustle/ner-dataset language: - en pipeline_tag: token-classification --- # bert-finetuned-ner-adam This model is a fine-tuned version of [dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) on an [hyperhustle/ner-dataset](https://huggingface.co/datasets/hyperhustle/ner-dataset) dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8845 - Recall: 0.8749 - F1: 0.8797 - Accuracy: 0.9646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0949 | 1.0 | 3080 | nan | 0.8914 | 0.8942 | 0.8928 | 0.9663 | | 0.0574 | 2.0 | 6160 | nan | 0.8763 | 0.8784 | 0.8773 | 0.9635 | | 0.0376 | 3.0 | 9240 | nan | 0.8845 | 0.8749 | 0.8797 | 0.9646 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2