""" Fused Attention =============== This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf) Credits: OpenAI kernel team Extra Credits: - Original flash attention paper (https://arxiv.org/abs/2205.14135) - Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf) """ import pytest import torch import triton import triton.language as tl # Pick the fp8 data type # AMD E4M3B8 # Note: When picking this f8 data type, scaling is required when using f8 # for the second gemm # TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz') # AMD E5M2B16 TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz') @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, N_CTX, pre_load_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # causal = False else: lo, hi = 0, N_CTX # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) if pre_load_v: v = tl.load(V_block_ptr) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = tl.where(mask, qk, float("-inf")) qk += tl.dot(q, k) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) # -- update output accumulator -- alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] if not pre_load_v: v = tl.load(V_block_ptr) acc += tl.dot(p.to(v.dtype), v) # -- update m_i and l_i l_ij = tl.sum(p, 1) l_i = l_i * alpha + l_ij # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning everytime to keep the tutorial fast. Uncommenting # the code below and commenting out the equivalent parameters is convenient for # re-tuning. @triton.autotune( configs=[ triton.Config({'BLOCK_M': 64, 'BLOCK_N': 16, 'waves_per_eu': 2, 'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 16, 'waves_per_eu': 2, 'slice_k_tile': 32, 'pre_load_v': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2, 'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=1), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2, 'slice_k_tile': 32, 'pre_load_v': False}, num_stages=1, num_warps=1), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'waves_per_eu': 2, 'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 3, 'slice_k_tile': 0, 'pre_load_v': True}, num_stages=1, num_warps=1), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 3, 'slice_k_tile': 0, 'pre_load_v': False}, num_stages=1, num_warps=1), ], key=['Z', 'H', 'N_CTX', 'STAGE', 'BLOCK_DMODEL'], ) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_DMODEL: tl.constexpr, STAGE: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, pre_load_v: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) qvk_offset = off_hz * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0), ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout on NV GPUs but in VGPRs on AMD GPUs q = tl.load(Q_block_ptr) q = (q * qk_scale).to(q.dtype) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, BLOCK_M, BLOCK_DMODEL, BLOCK_N, 4 - STAGE, offs_m, offs_n, N_CTX, pre_load_v, ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently tl.debug_barrier() acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, BLOCK_M, BLOCK_DMODEL, BLOCK_N, 2, offs_m, offs_n, N_CTX, pre_load_v, ) # epilogue # write back m acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i + tl.math.log2(l_i)) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, Delta, Z, H, N_CTX, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, D_HEAD) o = tl.load(O + off_hz * D_HEAD * N_CTX + off_m[:, None] * D_HEAD + off_n[None, :]) do = tl.load(DO + off_hz * D_HEAD * N_CTX + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, # shared by Q/K/V/DO. stride_tok, stride_d, H, N_CTX, BLOCK_M1: tl.constexpr, BLOCK_N1: tl.constexpr, BLOCK_DMODEL: tl.constexpr, # Filled in by the wrapper. start_n, start_m, num_steps, MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, BLOCK_DMODEL) QT_block_ptr = tl.make_block_ptr( base=Q, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_d, stride_tok), offsets=(0, start_m), block_shape=(BLOCK_DMODEL, BLOCK_M1), order=(0, 1) ) DO_block_ptr = tl.make_block_ptr( base=DO, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_m, 0), block_shape=(BLOCK_M1, BLOCK_DMODEL), order=(1, 0) ) # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(QT_block_ptr) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(DO_block_ptr) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m QT_block_ptr = tl.advance(QT_block_ptr, (0, step_m)) DO_block_ptr = tl.advance(DO_block_ptr, (step_m, 0)) return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, H, N_CTX, BLOCK_M2: tl.constexpr, BLOCK_N2: tl.constexpr, BLOCK_DMODEL: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, BLOCK_DMODEL) KT_block_ptr = tl.make_block_ptr( base=K, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_d, stride_tok), offsets=(0, start_n), block_shape=(BLOCK_DMODEL, BLOCK_N2), order=(0, 1) ) VT_block_ptr = tl.make_block_ptr( base=V, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_d, stride_tok), offsets=(0, start_n), block_shape=(BLOCK_DMODEL, BLOCK_N2), order=(0, 1) ) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(KT_block_ptr) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. vT = tl.load(VT_block_ptr) dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n KT_block_ptr = tl.advance(KT_block_ptr, (0, step_n)) VT_block_ptr = tl.advance(VT_block_ptr, (0, step_n)) return dq @triton.autotune( configs=[ triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 2}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 64, 'BLOCK_N1': 64, 'BLOCK_M2': 64, 'BLOCK_N2': 64, 'BLK_SLICE_FACTOR': 2}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M1': 32, 'BLOCK_N1': 128, 'BLOCK_M2': 128, 'BLOCK_N2': 32, 'BLK_SLICE_FACTOR': 2}, num_stages=1, num_warps=8), ], key=['H', 'N_CTX', 'BLOCK_DMODEL'], ) @triton.jit def _attn_bwd(Q, K, V, sm_scale, DO, DQ, DK, DV, M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H = 16, N_CTX = 1024 H, N_CTX, BLOCK_DMODEL: tl.constexpr, BLOCK_M1: tl.constexpr, BLOCK_N1: tl.constexpr, BLOCK_M2: tl.constexpr, BLOCK_N2: tl.constexpr, BLK_SLICE_FACTOR: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz offs_k = tl.arange(0, BLOCK_DMODEL) start_n = pid * BLOCK_N1 # This assignment is important. It is what allows us to pick the diagonal # blocks. Later, when we want to do the lower triangular, we update start_m # after the first dkdv call. start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32) K_block_ptr = tl.make_block_ptr( base=K, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_n, 0), block_shape=(BLOCK_N1, BLOCK_DMODEL), order=(1, 0), ) V_block_ptr = tl.make_block_ptr( base=V, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_n, 0), block_shape=(BLOCK_N1, BLOCK_DMODEL), order=(1, 0), ) # load K and V: they stay in SRAM throughout the inner loop for dkdv. k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok, stride_d, H, N_CTX, MASK_BLOCK_M1, BLOCK_N1, BLOCK_DMODEL, start_n, start_m, num_steps, MASK=True ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok, stride_d, H, N_CTX, BLOCK_M1, BLOCK_N1, BLOCK_DMODEL, start_n, start_m, num_steps, MASK=False ) DV_block_ptrs = tl.make_block_ptr( base=DV, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_n, 0), block_shape=(BLOCK_N1, BLOCK_DMODEL), order=(1, 0) ) tl.store(DV_block_ptrs, dv.to(tl.float16)) # Write back dK. dk *= sm_scale DK_block_ptrs = tl.make_block_ptr( base=DK, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_n, 0), block_shape=(BLOCK_N1, BLOCK_DMODEL), order=(1, 0) ) tl.store(DK_block_ptrs, dk.to(tl.float16)) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) Q_block_ptr = tl.make_block_ptr( base=Q, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_m, 0), block_shape=(BLOCK_M2, BLOCK_DMODEL), order=(1, 0) ) DO_block_ptr = tl.make_block_ptr( base=DO, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_m, 0), block_shape=(BLOCK_M2, BLOCK_DMODEL), order=(1, 0) ) q = tl.load(Q_block_ptr) do = tl.load(DO_block_ptr) dq = tl.zeros([BLOCK_M2, BLOCK_DMODEL], dtype=tl.float32) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, do, m, D, stride_tok, stride_d, H, N_CTX, BLOCK_M2, MASK_BLOCK_N2, BLOCK_DMODEL, start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, MASK=True ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, do, m, D, stride_tok, stride_d, H, N_CTX, BLOCK_M2, BLOCK_N2, BLOCK_DMODEL, start_m, end_n - num_steps * BLOCK_N2, num_steps, MASK=False ) # Write back dQ. DQ_block_ptr = tl.make_block_ptr( base=DQ, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_tok, stride_d), offsets=(start_m, 0), block_shape=(BLOCK_M2, BLOCK_DMODEL), order=(1, 0) ) dq *= LN2 tl.store(DQ_block_ptr, dq.to(tl.float16)) empty = torch.empty(128, device="cuda") class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.empty_like(q, dtype=v.dtype) if torch.version.hip is None: BLOCK_M = 128 BLOCK_N = 64 if Lk <= 64 else 32 num_stages = 4 if Lk <= 64 else 3 num_warps = 4 if Lk <= 64 else 8 # Tuning for H100 if torch.cuda.get_device_capability()[0] == 9: num_warps = 8 num_stages = 7 if Lk >= 64 else 3 stage = 3 if causal else 1 def grid(META): return ( triton.cdiv(q.shape[2], META['BLOCK_M']), q.shape[0] * q.shape[1], 1 ) M = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], N_CTX=q.shape[2], BLOCK_DMODEL=Lk, STAGE=stage, ) # restore the grid for bwd kernel best_config = _attn_fwd.get_best_config() block_m = int(best_config.__str__().split(",")[0].split("BLOCK_M:")[1]) grid = (triton.cdiv(q.shape[2], block_m), q.shape[0] * q.shape[1], 1) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk ctx.causal = causal return o @staticmethod def backward(ctx, do): if torch.version.hip is not None: BLOCK = 64 else: BLOCK = 128 q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 1 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 64, 64, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, delta, BATCH, N_HEAD, N_CTX, BLOCK_M=PRE_BLOCK, D_HEAD=ctx.BLOCK_DMODEL ) def grid(META): return ( triton.cdiv(N_CTX, META['BLOCK_N1']), 1, BATCH * N_HEAD ) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, M, delta, q.stride(0), q.stride(1), q.stride(2), q.stride(3), N_HEAD, N_CTX, BLOCK_DMODEL=ctx.BLOCK_DMODEL ) return dq, dk, dv, None, None attention = _attention.apply