#!/usr/bin/env python3 """ train_brain2vec.py Trains a 3D VAE-based Brain2Vec model using MONAI. This script implements autoencoder training with adversarial loss (via a patch discriminator), a perceptual loss, and KL divergence regularization for robust latent representations. Example usage: python train_brain2vec.py \ --dataset_csv inputs.csv \ --cache_dir ./ae_cache \ --output_dir ./ae_output \ --n_epochs 10 """ import os os.environ["PYTORCH_WEIGHTS_ONLY"] = "False" from typing import Optional, Union import pandas as pd import argparse import numpy as np import warnings import torch import torch.nn as nn from torch import Tensor from torch.optim.optimizer import Optimizer from torch.nn import L1Loss from torch.utils.data import DataLoader from torch.amp import autocast from torch.amp import GradScaler from generative.networks.nets import ( AutoencoderKL, PatchDiscriminator, ) from generative.losses import PerceptualLoss, PatchAdversarialLoss from monai.data import Dataset, PersistentDataset from monai.transforms.transform import Transform from monai import transforms from monai.utils import set_determinism from monai.data.meta_tensor import MetaTensor import torch.serialization from numpy.core.multiarray import _reconstruct from numpy import ndarray, dtype torch.serialization.add_safe_globals([_reconstruct]) torch.serialization.add_safe_globals([MetaTensor]) torch.serialization.add_safe_globals([ndarray]) torch.serialization.add_safe_globals([dtype]) from tqdm import tqdm import matplotlib.pyplot as plt from torch.utils.tensorboard import SummaryWriter # voxel resolution RESOLUTION = 2 # shape of the MNI152 (1mm^3) template INPUT_SHAPE_1mm = (182, 218, 182) # resampling the MNI152 to (1.5mm^3) INPUT_SHAPE_1p5mm = (122, 146, 122) # Adjusting the dimensions to be divisible by 8 (2^3 where 3 are the downsampling layers of the AE) #INPUT_SHAPE_AE = (120, 144, 120) INPUT_SHAPE_AE = (80, 96, 80) # Latent shape of the autoencoder LATENT_SHAPE_AE = (1, 10, 12, 10) def load_if(checkpoints_path: Optional[str], network: nn.Module) -> nn.Module: """ Load pretrained weights if available. Args: checkpoints_path (Optional[str]): path of the checkpoints network (nn.Module): the neural network to initialize Returns: nn.Module: the initialized neural network """ if checkpoints_path is not None: assert os.path.exists(checkpoints_path), 'Invalid path' network.load_state_dict(torch.load(checkpoints_path)) return network def init_autoencoder(checkpoints_path: Optional[str] = None) -> nn.Module: """ Load the KL autoencoder (pretrained if `checkpoints_path` points to previous params). Args: checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None. Returns: nn.Module: the KL autoencoder """ autoencoder = AutoencoderKL(spatial_dims=3, in_channels=1, out_channels=1, latent_channels=1, #3, num_channels=(64, 128, 256, 512), num_res_blocks=2, norm_num_groups=32, norm_eps=1e-06, attention_levels=(False, False, False, False), with_decoder_nonlocal_attn=False, with_encoder_nonlocal_attn=False) return load_if(checkpoints_path, autoencoder) def init_patch_discriminator(checkpoints_path: Optional[str] = None) -> nn.Module: """ Load the patch discriminator (pretrained if `checkpoints_path` points to previous params). Args: checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None. Returns: nn.Module: the patch discriminator """ patch_discriminator = PatchDiscriminator(spatial_dims=3, num_layers_d=3, num_channels=32, in_channels=1, out_channels=1) return load_if(checkpoints_path, patch_discriminator) class KLDivergenceLoss: """ A class for computing the Kullback-Leibler divergence loss. """ def __call__(self, z_mu: Tensor, z_sigma: Tensor) -> Tensor: """ Computes the KL divergence loss for the given parameters. Args: z_mu (Tensor): The mean of the distribution. z_sigma (Tensor): The standard deviation of the distribution. Returns: Tensor: The computed KL divergence loss, averaged over the batch size. """ kl_loss = 0.5 * torch.sum(z_mu.pow(2) + z_sigma.pow(2) - torch.log(z_sigma.pow(2)) - 1, dim=[1, 2, 3, 4]) return torch.sum(kl_loss) / kl_loss.shape[0] class GradientAccumulation: """ Implements gradient accumulation to facilitate training with larger effective batch sizes than what can be physically accommodated in memory. """ def __init__(self, actual_batch_size: int, expect_batch_size: int, loader_len: int, optimizer: Optimizer, grad_scaler: Optional[GradScaler] = None) -> None: """ Initializes the GradientAccumulation instance with the necessary parameters for managing gradient accumulation. Args: actual_batch_size (int): The size of the mini-batches actually used in training. expect_batch_size (int): The desired (effective) batch size to simulate through gradient accumulation. loader_len (int): The length of the data loader, representing the total number of mini-batches. optimizer (Optimizer): The optimizer used for performing optimization steps. grad_scaler (Optional[GradScaler], optional): A GradScaler for mixed precision training. Defaults to None. Raises: AssertionError: If `expect_batch_size` is not divisible by `actual_batch_size`. """ assert expect_batch_size % actual_batch_size == 0, \ 'expect_batch_size must be divisible by actual_batch_size' self.actual_batch_size = actual_batch_size self.expect_batch_size = expect_batch_size self.loader_len = loader_len self.optimizer = optimizer self.grad_scaler = grad_scaler # if the expected batch size is N=KM, and the actual batch size # is M, then we need to accumulate gradient from N / M = K optimization steps. self.steps_until_update = expect_batch_size / actual_batch_size def step(self, loss: Tensor, step: int) -> None: """ Performs a backward pass for the given loss and potentially executes an optimization step if the conditions for gradient accumulation are met. The optimization step is taken only after a specified number of steps (defined by the expected batch size) or at the end of the dataset. Args: loss (Tensor): The loss value for the current forward pass. step (int): The current step (mini-batch index) within the epoch. """ loss = loss / self.expect_batch_size if self.grad_scaler is not None: self.grad_scaler.scale(loss).backward() else: loss.backward() if (step + 1) % self.steps_until_update == 0 or (step + 1) == self.loader_len: if self.grad_scaler is not None: self.grad_scaler.step(self.optimizer) self.grad_scaler.update() else: self.optimizer.step() self.optimizer.zero_grad(set_to_none=True) class AverageLoss: """ Utility class to track losses and metrics during training. """ def __init__(self): self.losses_accumulator = {} def put(self, loss_key:str, loss_value:Union[int,float]) -> None: """ Store value Args: loss_key (str): Metric name loss_value (int | float): Metric value to store """ if loss_key not in self.losses_accumulator: self.losses_accumulator[loss_key] = [] self.losses_accumulator[loss_key].append(loss_value) def pop_avg(self, loss_key:str) -> float: """ Average the stored values of a given metric Args: loss_key (str): Metric name Returns: float: average of the stored values """ if loss_key not in self.losses_accumulator: return None losses = self.losses_accumulator[loss_key] self.losses_accumulator[loss_key] = [] return sum(losses) / len(losses) def to_tensorboard(self, writer: SummaryWriter, step: int): """ Logs the average value of all the metrics stored into Tensorboard. Args: writer (SummaryWriter): Tensorboard writer step (int): Tensorboard logging global step """ for metric_key in self.losses_accumulator.keys(): writer.add_scalar(metric_key, self.pop_avg(metric_key), step) def get_dataset_from_pd(df: pd.DataFrame, transforms_fn: Transform, cache_dir: Optional[str]) -> Union[Dataset,PersistentDataset]: """ If `cache_dir` is defined, returns a `monai.data.PersistenDataset`. Otherwise, returns a simple `monai.data.Dataset`. Args: df (pd.DataFrame): Dataframe describing each image in the longitudinal dataset. transforms_fn (Transform): Set of transformations cache_dir (Optional[str]): Cache directory (ensure enough storage is available) Returns: Dataset|PersistentDataset: The dataset """ assert cache_dir is None or os.path.exists(cache_dir), 'Invalid cache directory path' data = df.to_dict(orient='records') return Dataset(data=data, transform=transforms_fn) if cache_dir is None \ else PersistentDataset(data=data, transform=transforms_fn, cache_dir=cache_dir) def tb_display_reconstruction(writer, step, image, recon): """ Display reconstruction in TensorBoard during AE training. """ plt.style.use('dark_background') _, ax = plt.subplots(ncols=3, nrows=2, figsize=(7, 5)) for _ax in ax.flatten(): _ax.set_axis_off() if len(image.shape) == 4: image = image.squeeze(0) if len(recon.shape) == 4: recon = recon.squeeze(0) ax[0, 0].set_title('original image', color='cyan') ax[0, 0].imshow(image[image.shape[0] // 2, :, :], cmap='gray') ax[0, 1].imshow(image[:, image.shape[1] // 2, :], cmap='gray') ax[0, 2].imshow(image[:, :, image.shape[2] // 2], cmap='gray') ax[1, 0].set_title('reconstructed image', color='magenta') ax[1, 0].imshow(recon[recon.shape[0] // 2, :, :], cmap='gray') ax[1, 1].imshow(recon[:, recon.shape[1] // 2, :], cmap='gray') ax[1, 2].imshow(recon[:, :, recon.shape[2] // 2], cmap='gray') plt.tight_layout() writer.add_figure('Reconstruction', plt.gcf(), global_step=step) def set_environment(seed: int = 0) -> None: """ Set deterministic behavior for reproducibility. Args: seed (int, optional): Seed value. Defaults to 0. """ set_determinism(seed) def train( dataset_csv: str, cache_dir: str, output_dir: str, aekl_ckpt: Optional[str] = None, disc_ckpt: Optional[str] = None, num_workers: int = 8, n_epochs: int = 5, max_batch_size: int = 2, batch_size: int = 16, lr: float = 1e-4, aug_p: float = 0.8, device: str = ('cuda' if torch.cuda.is_available() else 'cpu'), ) -> None: """ Train the autoencoder and discriminator models. Args: dataset_csv (str): Path to the dataset CSV file. cache_dir (str): Directory for caching data. output_dir (str): Directory to save model checkpoints. aekl_ckpt (Optional[str], optional): Path to the autoencoder checkpoint. Defaults to None. disc_ckpt (Optional[str], optional): Path to the discriminator checkpoint. Defaults to None. num_workers (int, optional): Number of data loader workers. Defaults to 8. n_epochs (int, optional): Number of training epochs. Defaults to 5. max_batch_size (int, optional): Actual batch size per iteration. Defaults to 2. batch_size (int, optional): Expected (effective) batch size. Defaults to 16. lr (float, optional): Learning rate. Defaults to 1e-4. aug_p (float, optional): Augmentation probability. Defaults to 0.8. device (str, optional): Device to run the training on. Defaults to 'cuda' if available. """ set_environment(0) transforms_fn = transforms.Compose([ transforms.CopyItemsD(keys={'image_path'}, names=['image']), transforms.LoadImageD(image_only=True, keys=['image']), transforms.EnsureChannelFirstD(keys=['image']), transforms.SpacingD(pixdim=2, keys=['image']), transforms.ResizeWithPadOrCropD(spatial_size=(80, 96, 80), mode='minimum', keys=['image']), transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image']) ]) dataset_df = pd.read_csv(dataset_csv) train_df = dataset_df[dataset_df.split == 'train'] trainset = get_dataset_from_pd(train_df, transforms_fn, cache_dir) train_loader = DataLoader( dataset=trainset, num_workers=num_workers, batch_size=max_batch_size, shuffle=True, persistent_workers=True, pin_memory=True, ) print('Device is %s' %(device)) autoencoder = init_autoencoder(aekl_ckpt).to(device) discriminator = init_patch_discriminator(disc_ckpt).to(device) # Loss Weights adv_weight = 0.025 perceptual_weight = 0.001 kl_weight = 1e-7 # Loss Functions l1_loss_fn = L1Loss() kl_loss_fn = KLDivergenceLoss() adv_loss_fn = PatchAdversarialLoss(criterion="least_squares") with warnings.catch_warnings(): warnings.simplefilter("ignore") perc_loss_fn = PerceptualLoss( spatial_dims=3, network_type="squeeze", is_fake_3d=True, fake_3d_ratio=0.2 ).to(device) # Optimizers optimizer_g = torch.optim.Adam(autoencoder.parameters(), lr=lr) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=lr) # Gradient Accumulation gradacc_g = GradientAccumulation( actual_batch_size=max_batch_size, expect_batch_size=batch_size, loader_len=len(train_loader), optimizer=optimizer_g, grad_scaler=GradScaler() ) gradacc_d = GradientAccumulation( actual_batch_size=max_batch_size, expect_batch_size=batch_size, loader_len=len(train_loader), optimizer=optimizer_d, grad_scaler=GradScaler() ) # Logging avgloss = AverageLoss() writer = SummaryWriter() total_counter = 0 for epoch in range(n_epochs): print(f"[DEBUG] Starting epoch {epoch}/{n_epochs-1}") autoencoder.train() progress_bar = tqdm(enumerate(train_loader), total=len(train_loader)) progress_bar.set_description(f'Epoch {epoch}') for step, batch in progress_bar: # Generator Training with autocast(device, enabled=True): images = batch["image"].to(device) reconstruction, z_mu, z_sigma = autoencoder(images) logits_fake = discriminator(reconstruction.contiguous().float())[-1] rec_loss = l1_loss_fn(reconstruction.float(), images.float()) kl_loss = kl_weight * kl_loss_fn(z_mu, z_sigma) per_loss = perceptual_weight * perc_loss_fn(reconstruction.float(), images.float()) gen_loss = adv_weight * adv_loss_fn(logits_fake, target_is_real=True, for_discriminator=False) loss_g = rec_loss + kl_loss + per_loss + gen_loss gradacc_g.step(loss_g, step) # Discriminator Training with autocast(device, enabled=True): logits_fake = discriminator(reconstruction.contiguous().detach())[-1] d_loss_fake = adv_loss_fn(logits_fake, target_is_real=False, for_discriminator=True) logits_real = discriminator(images.contiguous().detach())[-1] d_loss_real = adv_loss_fn(logits_real, target_is_real=True, for_discriminator=True) discriminator_loss = (d_loss_fake + d_loss_real) * 0.5 loss_d = adv_weight * discriminator_loss gradacc_d.step(loss_d, step) # Logging avgloss.put('Generator/reconstruction_loss', rec_loss.item()) avgloss.put('Generator/perceptual_loss', per_loss.item()) avgloss.put('Generator/adversarial_loss', gen_loss.item()) avgloss.put('Generator/kl_regularization', kl_loss.item()) avgloss.put('Discriminator/adversarial_loss', loss_d.item()) if total_counter % 10 == 0: step_log = total_counter // 10 avgloss.to_tensorboard(writer, step_log) tb_display_reconstruction( writer, step_log, images[0].detach().cpu(), reconstruction[0].detach().cpu() ) total_counter += 1 # Save the model after each epoch. os.makedirs(output_dir, exist_ok=True) torch.save(discriminator.state_dict(), os.path.join(output_dir, f'discriminator-ep-{epoch}.pth')) torch.save(autoencoder.state_dict(), os.path.join(output_dir, f'autoencoder-ep-{epoch}.pth')) writer.close() print("Training completed and models saved.") def main(): """ Main function to parse command-line arguments and run train(). """ import argparse parser = argparse.ArgumentParser(description="brain2vec Training Script") parser.add_argument('--dataset_csv', type=str, required=True, help='Path to the dataset CSV file.') parser.add_argument('--cache_dir', type=str, required=True, help='Directory for caching data.') parser.add_argument('--output_dir', type=str, required=True, help='Directory to save model checkpoints.') parser.add_argument('--aekl_ckpt', type=str, default=None, help='Path to the autoencoder checkpoint.') parser.add_argument('--disc_ckpt', type=str, default=None, help='Path to the discriminator checkpoint.') parser.add_argument('--num_workers', type=int, default=8, help='Number of data loader workers.') parser.add_argument('--n_epochs', type=int, default=5, help='Number of training epochs.') parser.add_argument('--max_batch_size', type=int, default=2, help='Actual batch size per iteration.') parser.add_argument('--batch_size', type=int, default=16, help='Expected (effective) batch size.') parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate.') parser.add_argument('--aug_p', type=float, default=0.8, help='Augmentation probability.') args = parser.parse_args() train( dataset_csv=args.dataset_csv, cache_dir=args.cache_dir, output_dir=args.output_dir, aekl_ckpt=args.aekl_ckpt, disc_ckpt=args.disc_ckpt, num_workers=args.num_workers, n_epochs=args.n_epochs, max_batch_size=args.max_batch_size, batch_size=args.batch_size, lr=args.lr, aug_p=args.aug_p, ) if __name__ == '__main__': main()