--- library_name: quantile-forest license: apache-2.0 tags: - quantile-forest - sklearn - skops - tabular-regression - quantile-regression - uncertainty-estimation - prediction-intervals model_format: pickle model_file: model.pkl widget: - structuredData: AveBedrms: - 1.0238095238095237 - 0.9718804920913884 - 1.073446327683616 AveOccup: - 2.5555555555555554 - 2.109841827768014 - 2.8022598870056497 AveRooms: - 6.984126984126984 - 6.238137082601054 - 8.288135593220339 HouseAge: - 41.0 - 21.0 - 52.0 Latitude: - 37.88 - 37.86 - 37.85 Longitude: - -122.23 - -122.22 - -122.24 MedInc: - 8.3252 - 8.3014 - 7.2574 Population: - 322.0 - 2401.0 - 496.0 --- # Model description This is a RandomForestQuantileRegressor trained on the California Housing dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure The model was trained using default parameters on a 5-fold cross-validation pipeline. ### Hyperparameters
Click to expand | Hyperparameter | Value | |--------------------------|----------------------| | bootstrap | True | | ccp_alpha | 0.0 | | criterion | squared_error | | default_quantiles | 0.5 | | max_depth | | | max_features | 1.0 | | max_leaf_nodes | | | max_samples | | | max_samples_leaf | 1 | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | monotonic_cst | | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | RandomState(MT19937) | | verbose | 0 | | warm_start | False |
### Model Plot
RandomForestQuantileRegressor(random_state=RandomState(MT19937) at 0x129E7B440)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results | Metric | Value | |--------------------------------|----------| | Mean Absolute Percentage Error | 0.164007 | | Median Absolute Error | 0.171 | | Mean Squared Error | 0.25832 | | R-Squared | 0.806 | # How to Get Started with the Model
Click to expand ```python from examples.plot_qrf_huggingface_inference import CrossValidationPipeline pipeline = CrossValidationPipeline.load(qrf_pkl_filename) ```
# Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```