---
library_name: quantile-forest
license: apache-2.0
tags:
- quantile-forest
- sklearn
- skops
- tabular-regression
- quantile-regression
- uncertainty-estimation
- prediction-intervals
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
AveBedrms:
- 1.0238095238095237
- 0.9718804920913884
- 1.073446327683616
AveOccup:
- 2.5555555555555554
- 2.109841827768014
- 2.8022598870056497
AveRooms:
- 6.984126984126984
- 6.238137082601054
- 8.288135593220339
HouseAge:
- 41.0
- 21.0
- 52.0
Latitude:
- 37.88
- 37.86
- 37.85
Longitude:
- -122.23
- -122.22
- -122.24
MedInc:
- 8.3252
- 8.3014
- 7.2574
Population:
- 322.0
- 2401.0
- 496.0
---
# Model description
This is a RandomForestQuantileRegressor trained on the California Housing dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
The model was trained using default parameters on a 5-fold cross-validation pipeline.
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|----------------------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| criterion | squared_error |
| default_quantiles | 0.5 |
| max_depth | |
| max_features | 1.0 |
| max_leaf_nodes | |
| max_samples | |
| max_samples_leaf | 1 |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| monotonic_cst | |
| n_estimators | 100 |
| n_jobs | |
| oob_score | False |
| random_state | RandomState(MT19937) |
| verbose | 0 |
| warm_start | False |
RandomForestQuantileRegressor(random_state=RandomState(MT19937) at 0x129E7B440)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestQuantileRegressor(random_state=RandomState(MT19937) at 0x129E7B440)