|
--- |
|
library_name: transformers |
|
base_model: Fsoft-AIC/videberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov |
|
|
|
This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0976 |
|
- Accuracy: 0.9816 |
|
- F1: 0.0 |
|
- Precision: 0.0 |
|
- Recall: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:---------:|:------:| |
|
| No log | 1.0 | 250 | 0.0903 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.1532 | 2.0 | 500 | 0.0942 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.1532 | 3.0 | 750 | 0.0947 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0772 | 4.0 | 1000 | 0.0956 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0772 | 5.0 | 1250 | 0.0964 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0769 | 6.0 | 1500 | 0.0952 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0769 | 7.0 | 1750 | 0.0988 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 8.0 | 2000 | 0.0983 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 9.0 | 2250 | 0.0971 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0769 | 10.0 | 2500 | 0.0984 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0769 | 11.0 | 2750 | 0.1002 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0768 | 12.0 | 3000 | 0.0989 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0768 | 13.0 | 3250 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 14.0 | 3500 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 15.0 | 3750 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0763 | 16.0 | 4000 | 0.0991 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0763 | 17.0 | 4250 | 0.1011 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 18.0 | 4500 | 0.0995 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0766 | 19.0 | 4750 | 0.1003 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0761 | 20.0 | 5000 | 0.0996 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0761 | 21.0 | 5250 | 0.1004 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0757 | 22.0 | 5500 | 0.1002 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0757 | 23.0 | 5750 | 0.0993 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0749 | 24.0 | 6000 | 0.0981 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0749 | 25.0 | 6250 | 0.0986 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0739 | 26.0 | 6500 | 0.0991 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0739 | 27.0 | 6750 | 0.0983 | 0.9825 | 0.0 | 0.0 | 0.0 | |
|
| 0.0723 | 28.0 | 7000 | 0.0985 | 0.9808 | 0.0 | 0.0 | 0.0 | |
|
| 0.0723 | 29.0 | 7250 | 0.1009 | 0.9800 | 0.0 | 0.0 | 0.0 | |
|
| 0.0713 | 30.0 | 7500 | 0.0995 | 0.9812 | 0.0 | 0.0 | 0.0 | |
|
| 0.0713 | 31.0 | 7750 | 0.0983 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0699 | 32.0 | 8000 | 0.0969 | 0.9820 | 0.0 | 0.0 | 0.0 | |
|
| 0.0699 | 33.0 | 8250 | 0.0982 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0691 | 34.0 | 8500 | 0.0973 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0691 | 35.0 | 8750 | 0.0984 | 0.9812 | 0.0 | 0.0 | 0.0 | |
|
| 0.0684 | 36.0 | 9000 | 0.0977 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0684 | 37.0 | 9250 | 0.0978 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0676 | 38.0 | 9500 | 0.0972 | 0.9820 | 0.0 | 0.0 | 0.0 | |
|
| 0.0676 | 39.0 | 9750 | 0.0977 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
| 0.0671 | 40.0 | 10000 | 0.0976 | 0.9816 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|