--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.061185706621337065 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432120 - CO2 Emissions (in grams): 0.061185706621337065 ## Validation Metrics - Loss: 0.6066656112670898 - Accuracy: 0.724822695035461 - Macro F1: 0.7077087000886584 - Micro F1: 0.7248226950354609 - Weighted F1: 0.7077087000886584 - Macro Precision: 0.7143184427227084 - Micro Precision: 0.724822695035461 - Weighted Precision: 0.7143184427227083 - Macro Recall: 0.7248226950354609 - Micro Recall: 0.724822695035461 - Weighted Recall: 0.724822695035461 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432120 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```