--- library_name: pytorch license: agpl-3.0 tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov3/web-assets/model_demo.png) # Yolo-v3: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge YoloV3 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of Yolo-v3 found [here](https://github.com/ultralytics/yolov3/tree/v8). More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov3). ### Model Details - **Model Type:** Object detection - **Model Stats:** - Model checkpoint: YoloV3 Tiny - Input resolution: 416p (416x416) - Number of parameters: 8.85M - Model size: 24.4 MB | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | Yolo-v3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 16.25 ms | 0 - 8 MB | FP16 | NPU | -- | | Yolo-v3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 8.663 ms | 5 - 7 MB | FP16 | NPU | -- | | Yolo-v3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 12.159 ms | 6 - 72 MB | FP16 | NPU | -- | | Yolo-v3 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 10.704 ms | 0 - 95 MB | FP16 | NPU | -- | | Yolo-v3 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 6.163 ms | 5 - 23 MB | FP16 | NPU | -- | | Yolo-v3 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.425 ms | 16 - 45 MB | FP16 | NPU | -- | | Yolo-v3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 8.353 ms | 0 - 73 MB | FP16 | NPU | -- | | Yolo-v3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 7.857 ms | 5 - 30 MB | FP16 | NPU | -- | | Yolo-v3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 11.015 ms | 5 - 27 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 107.671 ms | 0 - 69 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 97.988 ms | 0 - 10 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 16.78 ms | 0 - 12 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 8.348 ms | 5 - 8 MB | FP16 | NPU | -- | | Yolo-v3 | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 21.365 ms | 0 - 71 MB | FP16 | NPU | -- | | Yolo-v3 | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 11.777 ms | 1 - 10 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 18.119 ms | 0 - 88 MB | FP16 | NPU | -- | | Yolo-v3 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 12.984 ms | 5 - 29 MB | FP16 | NPU | -- | | Yolo-v3 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 8.534 ms | 5 - 5 MB | FP16 | NPU | -- | | Yolo-v3 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.306 ms | 5 - 5 MB | FP16 | NPU | -- | ## License * The license for the original implementation of Yolo-v3 can be found [here](https://github.com/ultralytics/yolov3/blob/v8/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/yolov3/blob/v8/LICENSE) ## References * [YOLOv3: An Incremental Improvement](https://arxiv.org/abs/1804.02767) * [Source Model Implementation](https://github.com/ultralytics/yolov3/tree/v8) ## Community * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com). ## Usage and Limitations Model may not be used for or in connection with any of the following applications: - Accessing essential private and public services and benefits; - Administration of justice and democratic processes; - Assessing or recognizing the emotional state of a person; - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; - Education and vocational training; - Employment and workers management; - Exploitation of the vulnerabilities of persons resulting in harmful behavior; - General purpose social scoring; - Law enforcement; - Management and operation of critical infrastructure; - Migration, asylum and border control management; - Predictive policing; - Real-time remote biometric identification in public spaces; - Recommender systems of social media platforms; - Scraping of facial images (from the internet or otherwise); and/or - Subliminal manipulation