Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,7 +38,8 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.
|
|
|
42 |
|
43 |
|
44 |
## Installation
|
@@ -98,11 +99,18 @@ python -m qai_hub_models.models.mobilenet_v2_quantized.export
|
|
98 |
```
|
99 |
Profile Job summary of MobileNet-v2-Quantized
|
100 |
--------------------------------------------------
|
101 |
-
Device: Samsung Galaxy
|
102 |
-
Estimated Inference Time: 0.
|
103 |
-
Estimated Peak Memory Range: 0.01-
|
104 |
Compute Units: NPU (70) | Total (70)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
```
|
108 |
## How does this work?
|
@@ -220,7 +228,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
220 |
## License
|
221 |
- The license for the original implementation of MobileNet-v2-Quantized can be found
|
222 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
223 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
224 |
|
225 |
## References
|
226 |
* [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
|
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.237 ms | 0 - 1 MB | INT8 | NPU | [MobileNet-v2-Quantized.tflite](https://huggingface.co/qualcomm/MobileNet-v2-Quantized/blob/main/MobileNet-v2-Quantized.tflite)
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.352 ms | 0 - 90 MB | INT8 | NPU | [MobileNet-v2-Quantized.so](https://huggingface.co/qualcomm/MobileNet-v2-Quantized/blob/main/MobileNet-v2-Quantized.so)
|
43 |
|
44 |
|
45 |
## Installation
|
|
|
99 |
```
|
100 |
Profile Job summary of MobileNet-v2-Quantized
|
101 |
--------------------------------------------------
|
102 |
+
Device: Samsung Galaxy S24 (14)
|
103 |
+
Estimated Inference Time: 0.17 ms
|
104 |
+
Estimated Peak Memory Range: 0.01-34.29 MB
|
105 |
Compute Units: NPU (70) | Total (70)
|
106 |
|
107 |
+
Profile Job summary of MobileNet-v2-Quantized
|
108 |
+
--------------------------------------------------
|
109 |
+
Device: Samsung Galaxy S24 (14)
|
110 |
+
Estimated Inference Time: 0.25 ms
|
111 |
+
Estimated Peak Memory Range: 0.16-34.32 MB
|
112 |
+
Compute Units: NPU (69) | Total (69)
|
113 |
+
|
114 |
|
115 |
```
|
116 |
## How does this work?
|
|
|
228 |
## License
|
229 |
- The license for the original implementation of MobileNet-v2-Quantized can be found
|
230 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
231 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
232 |
|
233 |
## References
|
234 |
* [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
|