---
library_name: pytorch
license: mit
pipeline_tag: image-to-image
tags:
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/aotgan/web-assets/model_demo.png)

# AOT-GAN: Optimized for Mobile Deployment
## High resolution image in-painting on-device


AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.

This model is an implementation of AOT-GAN found [here](https://github.com/researchmm/AOT-GAN-for-Inpainting).


This repository provides scripts to run AOT-GAN on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/aotgan).


### Model Details

- **Model Type:** Image editing
- **Model Stats:**
  - Model checkpoint: CelebAHQ
  - Input resolution: 512x512
  - Number of parameters: 15.2M
  - Model size: 58.0 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 150.216 ms | 3 - 38 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 153.714 ms | 1 - 32 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
| AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 105.712 ms | 6 - 113 MB | FP16 | NPU | [AOT-GAN.onnx](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx) |
| AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 112.126 ms | 2 - 60 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 112.4 ms | 4 - 62 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
| AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 79.635 ms | 12 - 113 MB | FP16 | NPU | [AOT-GAN.onnx](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx) |
| AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 118.224 ms | 2 - 65 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 98.639 ms | 3 - 66 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 76.142 ms | 11 - 114 MB | FP16 | NPU | [AOT-GAN.onnx](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx) |
| AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 150.247 ms | 3 - 41 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 102.477 ms | 4 - 7 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | SA7255P ADP | SA7255P | TFLITE | 3625.101 ms | 0 - 61 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | SA7255P ADP | SA7255P | QNN | 3580.217 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 150.364 ms | 3 - 36 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | QNN | 102.639 ms | 4 - 7 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | SA8295P ADP | SA8295P | TFLITE | 218.903 ms | 3 - 52 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | SA8295P ADP | SA8295P | QNN | 164.565 ms | 1 - 16 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 150.746 ms | 3 - 42 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | QNN | 104.201 ms | 5 - 7 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | SA8775P ADP | SA8775P | TFLITE | 241.948 ms | 3 - 64 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | SA8775P ADP | SA8775P | QNN | 181.669 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 195.56 ms | 3 - 53 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 194.959 ms | 4 - 50 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 105.122 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
| AOT-GAN | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 102.363 ms | 30 - 30 MB | FP16 | NPU | [AOT-GAN.onnx](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.aotgan.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.aotgan.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.aotgan.export
```
```
Profiling Results
------------------------------------------------------------
AOT-GAN
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 150.2                  
Estimated peak memory usage (MB): [3, 38]                
Total # Ops                     : 235                    
Compute Unit(s)                 : NPU (235 ops)          
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/aotgan/qai_hub_models/models/AOT-GAN/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.aotgan import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.aotgan.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.aotgan.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of AOT-GAN can be found
  [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
* [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).