import argparse import sys import torch import torch.nn as nn from PIL import Image from transformers import ( AutoTokenizer, BitsAndBytesConfig, LlamaForCausalLM, SiglipImageProcessor, SiglipVisionModel, ) from transformers import TextStreamer def tokenizer_image_token(prompt, tokenizer, image_token_index=-200): prompt_chunks = prompt.split("") tokenized_chunks = [tokenizer(chunk).input_ids for chunk in prompt_chunks] input_ids = tokenized_chunks[0] for chunk in tokenized_chunks[1:]: input_ids.append(image_token_index) input_ids.extend(chunk[1:]) # Exclude BOS token on nonzero index return torch.tensor(input_ids, dtype=torch.long) def process_tensors(input_ids, image_features, embedding_layer): # Find the index of -200 in input_ids split_index = (input_ids == -200).nonzero(as_tuple=True)[1][0] # Split the input_ids at the index found, excluding -200 input_ids_1 = input_ids[:, :split_index] input_ids_2 = input_ids[:, split_index + 1 :] # Convert input_ids to embeddings embeddings_1 = embedding_layer(input_ids_1) embeddings_2 = embedding_layer(input_ids_2) device = image_features.device token_embeddings_part1 = embeddings_1.to(device) token_embeddings_part2 = embeddings_2.to(device) # Concatenate the token embeddings and image features concatenated_embeddings = torch.cat( [token_embeddings_part1, image_features, token_embeddings_part2], dim=1 ) # Create the corrected attention mask attention_mask = torch.ones( concatenated_embeddings.shape[:2], dtype=torch.long, device=device ) return concatenated_embeddings, attention_mask def initialize_models(): bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained( "unsloth/llama-3-8b-Instruct", use_fast=True ) model = LlamaForCausalLM.from_pretrained( "unsloth/llama-3-8b-Instruct", torch_dtype=torch.float16, device_map="auto", quantization_config=bnb_config, ) for param in model.base_model.parameters(): param.requires_grad = False model_name = "google/siglip-so400m-patch14-384" vision_model = SiglipVisionModel.from_pretrained( model_name, torch_dtype=torch.float16 ) processor = SiglipImageProcessor.from_pretrained(model_name) vision_model = vision_model.to("cuda") return tokenizer, model, vision_model, processor class ProjectionModule(nn.Module): def __init__(self, mm_hidden_size, hidden_size): super(ProjectionModule, self).__init__() # Directly set up the sequential model self.model = nn.Sequential( nn.Linear(mm_hidden_size, hidden_size), nn.GELU(), nn.Linear(hidden_size, hidden_size), ) def forward(self, x): return self.model(x) def load_projection_module(mm_hidden_size=1152, hidden_size=4096, device="cuda"): projection_module = ProjectionModule(mm_hidden_size, hidden_size) checkpoint = torch.load("./mm_projector.bin") checkpoint = {k.replace("mm_projector.", ""): v for k, v in checkpoint.items()} projection_module.load_state_dict(checkpoint) projection_module = projection_module.to(device).half() return projection_module def answer_question( image_path, tokenizer, model, vision_model, processor, projection_module ): image = Image.open(image_path).convert("RGB") tokenizer.eos_token = "<|eot_id|>" try: q = input("\nuser: ") except EOFError: q = "" if not q: print("no input detected. exiting.") sys.exit() question = "" + q prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" input_ids = ( tokenizer_image_token(prompt, tokenizer) .unsqueeze(0) .to(model.device) ) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): image_inputs = processor( images=[image], return_tensors="pt", do_resize=True, size={"height": 384, "width": 384}, ).to("cuda") image_inputs = image_inputs["pixel_values"].squeeze(0) image_forward_outs = vision_model( image_inputs.to(device="cuda", dtype=torch.float16).unsqueeze(0), output_hidden_states=True, ) image_features = image_forward_outs.hidden_states[-2] projected_embeddings = projection_module(image_features).to("cuda") embedding_layer = model.get_input_embeddings() # text_embeddings = embedding_layer(input_ids) new_embeds, attn_mask = process_tensors( input_ids, projected_embeddings, embedding_layer ) device = model.device attn_mask = attn_mask.to(device) new_embeds = new_embeds.to(device) model_kwargs = { "do_sample": True, "temperature": 0.2, "max_new_tokens": 2000, "use_cache": True, "streamer": streamer, "pad_token_id": tokenizer.eos_token_id } while True: print('assistant: ') generated_ids = model.generate( inputs_embeds=new_embeds, attention_mask=attn_mask, **model_kwargs )[0] generated_text = tokenizer.decode(generated_ids, skip_special_tokens=False) try: q = input("\nuser: ") except EOFError: q = "" if not q: print("no input detected. exiting.") new_text = ( generated_text + "<|start_header_id|>user<|end_header_id|>\n\n" + q + "<|start_header_id|>assistant<|end_header_id|>\n\n" ) new_input_ids = tokenizer(new_text, return_tensors="pt").input_ids.to( device ) new_embeddings = embedding_layer(new_input_ids) new_embeds = torch.cat([new_embeds, new_embeddings], dim=1) attn_mask = torch.ones(new_embeds.shape[:2], device=device) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Answer questions based on an image") parser.add_argument("-i", "--image", required=True, help="Path to the image file") args = parser.parse_args() tokenizer, model, vision_model, processor = initialize_models() projection_module = load_projection_module() answer_question( args.image, tokenizer, model, vision_model, processor, projection_module, )