""" This code was originally taken from https://github.com/google/prompt-to-prompt """ LOW_RESOURCE = True MAX_NUM_WORDS = 77 from typing import Optional, Union, Tuple, List, Callable, Dict import prompt_to_prompt.ptp_utils as ptp_utils import prompt_to_prompt.seq_aligner as seq_aligner import torch import torch.nn.functional as nnf import abc import numpy as np class LocalBlend: def __call__(self, x_t, attention_store): k = 1 maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] maps = torch.cat(maps, dim=1) maps = (maps * self.alpha_layers).sum(-1).mean(1) mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) mask = nnf.interpolate(mask, size=(x_t.shape[2:])) mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] mask = mask.gt(self.threshold) mask = (mask[:1] + mask[1:]).float() x_t = x_t[:1] + mask * (x_t - x_t[:1]) return x_t def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3, device=None, tokenizer=None): alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) for i, (prompt, words_) in enumerate(zip(prompts, words)): if type(words_) is str: words_ = [words_] for word in words_: ind = ptp_utils.get_word_inds(prompt, word, tokenizer) alpha_layers[i, :, :, :, :, ind] = 1 self.alpha_layers = alpha_layers.to(device) self.threshold = threshold class AttentionControl(abc.ABC): def step_callback(self, x_t): return x_t def between_steps(self): return @property def num_uncond_att_layers(self): return self.num_att_layers if LOW_RESOURCE else 0 @abc.abstractmethod def forward (self, attn, is_cross: bool, place_in_unet: str): raise NotImplementedError def __call__(self, attn, is_cross: bool, place_in_unet: str): if self.cur_att_layer >= self.num_uncond_att_layers: if LOW_RESOURCE: attn = self.forward(attn, is_cross, place_in_unet) else: h = attn.shape[0] attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: self.cur_att_layer = 0 self.cur_step += 1 self.between_steps() return attn def reset(self): self.cur_step = 0 self.cur_att_layer = 0 def __init__(self): self.cur_step = 0 self.num_att_layers = -1 self.cur_att_layer = 0 class EmptyControl(AttentionControl): def forward (self, attn, is_cross: bool, place_in_unet: str): return attn class AttentionStore(AttentionControl): @staticmethod def get_empty_store(): return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" if attn.shape[1] <= 32 ** 2: # avoid memory overhead self.step_store[key].append(attn) return attn def between_steps(self): if len(self.attention_store) == 0: self.attention_store = self.step_store else: for key in self.attention_store: for i in range(len(self.attention_store[key])): self.attention_store[key][i] += self.step_store[key][i] self.step_store = self.get_empty_store() def get_average_attention(self): average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} return average_attention def reset(self): super(AttentionStore, self).reset() self.step_store = self.get_empty_store() self.attention_store = {} def __init__(self): super(AttentionStore, self).__init__() self.step_store = self.get_empty_store() self.attention_store = {} class AttentionControlEdit(AttentionStore, abc.ABC): def step_callback(self, x_t): if self.local_blend is not None: x_t = self.local_blend(x_t, self.attention_store) return x_t def replace_self_attention(self, attn_base, att_replace): if att_replace.shape[2] <= 16 ** 2: return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) else: return att_replace @abc.abstractmethod def replace_cross_attention(self, attn_base, att_replace): raise NotImplementedError def forward(self, attn, is_cross: bool, place_in_unet: str): super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): h = attn.shape[0] // (self.batch_size) attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) attn_base, attn_repalce = attn[0], attn[1:] if is_cross: alpha_words = self.cross_replace_alpha[self.cur_step] attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce attn[1:] = attn_repalce_new else: attn[1:] = self.replace_self_attention(attn_base, attn_repalce) attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) return attn def __init__(self, prompts, num_steps: int, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], self_replace_steps: Union[float, Tuple[float, float]], local_blend: Optional[LocalBlend], device=None, tokenizer=None): super(AttentionControlEdit, self).__init__() self.batch_size = len(prompts) self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) if type(self_replace_steps) is float: self_replace_steps = 0, self_replace_steps self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) self.local_blend = local_blend class AttentionReplace(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None, model=None): super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, device=model.device) self.mapper = seq_aligner.get_replacement_mapper(prompts, model.tokenizer).to(model.device) class AttentionRefine(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) return attn_replace def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None, model=None): super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, device=model.device) self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, model.tokenizer) self.mapper, alphas = self.mapper.to(model.device), alphas.to(model.device) self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) class AttentionReweight(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): if self.prev_controller is not None: attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] return attn_replace def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None, device=None, tokenizer=None): super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.equalizer = equalizer.to(device) self.prev_controller = controller def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer=None): if type(word_select) is int or type(word_select) is str: word_select = (word_select,) equalizer = torch.ones(len(values), 77) values = torch.tensor(values, dtype=torch.float32) for word in word_select: inds = ptp_utils.get_word_inds(text, word, tokenizer) equalizer[:, inds] = values return equalizer from PIL import Image def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int, prompts=None): out = [] attention_maps = attention_store.get_average_attention() num_pixels = res ** 2 for location in from_where: for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: if item.shape[1] == num_pixels: cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] out.append(cross_maps) out = torch.cat(out, dim=0) out = out.sum(0) / out.shape[0] return out.cpu() def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0, prompts=None, tokenizer=None): tokens = tokenizer.encode(prompts[select]) decoder = tokenizer.decode attention_maps = aggregate_attention(attention_store, res, from_where, True, select, prompts) images = [] for i in range(len(tokens)): image = attention_maps[:, :, i] image = 255 * image / image.max() image = image.unsqueeze(-1).expand(*image.shape, 3) image = image.numpy().astype(np.uint8) image = np.array(Image.fromarray(image).resize((256, 256))) image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) images.append(image) return(ptp_utils.view_images(np.stack(images, axis=0))) def show_self_attention_comp(attention_store: AttentionStore, res: int, from_where: List[str], max_com=10, select: int = 0): attention_maps = aggregate_attention(attention_store, res, from_where, False, select).numpy().reshape((res ** 2, res ** 2)) u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) images = [] for i in range(max_com): image = vh[i].reshape(res, res) image = image - image.min() image = 255 * image / image.max() image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) image = Image.fromarray(image).resize((256, 256)) image = np.array(image) images.append(image) ptp_utils.view_images(np.concatenate(images, axis=1)) def run_and_display(model, prompts, controller, latent=None, run_baseline=False, generator=None): if run_baseline: print("w.o. prompt-to-prompt") images, latent = run_and_display(model, prompts, EmptyControl(), latent=latent, run_baseline=False, generator=generator) print("with prompt-to-prompt") images, x_t = ptp_utils.text2image_ld def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None): if type(image_path) is str: image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3] else: image = image_path h, w, c = image.shape left = min(left, w-1) right = min(right, w - left - 1) top = min(top, h - left - 1) bottom = min(bottom, h - top - 1) image = image[top:h-bottom, left:w-right] h, w, c = image.shape if h < w: offset = (w - h) // 2 image = image[:, offset:offset + h] elif w < h: offset = (h - w) // 2 image = image[offset:offset + w] image = np.array(Image.fromarray(image).resize((512, 512))) image = torch.from_numpy(image).float() / 127.5 - 1 image = image.permute(2, 0, 1).unsqueeze(0).to(device) return image