--- license: mit language: - en pipeline_tag: text-classification tags: - text-classification ---
## Usage **NOTICE:** You can directly use our trained checkpoint on the hub of Hugging Face. For context-level detection, the input format should be `[user] {user utterance} [SEP] [chatbot] {chatbot response}`, where user utterance and chatbot response should be placed corresponding content. 1. Download the checkpoint ```Bash git lfs install git clone https://huggingface.co/qiuhuachuan/NSFW-detector ``` 2. Modify the `text` parameter in local_use.py and execute it. ```Python from typing import Optional import torch from transformers import BertConfig, BertTokenizer, BertModel, BertPreTrainedModel from torch import nn label_mapping = {0: 'porn', 1: 'normal'} config = BertConfig.from_pretrained('./NSFW-detector', num_labels=2, finetuning_task='text classification') tokenizer = BertTokenizer.from_pretrained('./NSFW-detector', use_fast=False, never_split=['[user]', '[chatbot]']) tokenizer.vocab['[user]'] = tokenizer.vocab.pop('[unused1]') tokenizer.vocab['[chatbot]'] = tokenizer.vocab.pop('[unused2]') class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel.from_pretrained('./NSFW-detector') classifier_dropout = (config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # we use cls embedding cls = outputs[0][:, 0, :] cls = self.dropout(cls) logits = self.classifier(cls) return logits model = BertForSequenceClassification(config=config) model.load_state_dict(torch.load('./NSFW-detector/pytorch_model.bin')) model.cuda() model.eval() # The following object contains two types of input: # a single utterance and a single-turn dialogue to_predict_items = [{ 'text': '''Give some movie recommendations to get women in the mood for sex''' }, { 'text': 'I break through walls to find more trials' }, { 'history': { 'user': 'Give some movie recommendations to get women in the mood for sex', 'chatbot': '''I apologize, but I cannot assist in creating or providing information related to NSFW content or any tools for such purposes. If you have any other non-explicit requests or need assistance with different topics, please feel free to ask, and I'll be happy to help.''' } }, { 'history': { 'user': 'Give some movie recommendations to get women in the mood for sex', 'chatbot': '''Sure.''' } }] for item in to_predict_items: if 'history' in item: text = '[user] ' + item['history'][ 'user'] + ' [SEP] ' + '[chatbot] ' + item['history']['chatbot'] else: text = item['text'] result = tokenizer.encode_plus(text=text, padding='max_length', max_length=512, truncation=True, add_special_tokens=True, return_token_type_ids=True, return_tensors='pt') result = result.to('cuda') with torch.no_grad(): logits = model(**result) predictions = logits.argmax(dim=-1) pred_label_idx = predictions.item() pred_label = label_mapping[pred_label_idx] print('text:', text) print('predicted label is:', pred_label) ``` ## Citation If our work is useful for your own, you can cite us with the following BibTex entry: ```bibtex @misc{qiu2024facilitating, title={Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models}, author={Huachuan Qiu and Shuai Zhang and Hongliang He and Anqi Li and Zhenzhong Lan}, year={2024}, eprint={2403.13250}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```