qgallouedec HF staff commited on
Commit
0c417fd
·
1 Parent(s): 1ad1adc

Initial commit

Browse files
Files changed (4) hide show
  1. replay.mp4 +3 -0
  2. results.json +1 -1
  3. tqc-LiftCube-v0.zip +1 -1
  4. tqc-LiftCube-v0/data +7 -7
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1d976ba1faada64b15dfcddb46fce184836a329c65a5b4af5ec80f33448ba59
3
+ size 220552
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 5.5155896, "std_reward": 1.9174329601274307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-08T16:52:52.414525"}
 
1
+ {"mean_reward": 5.5155896, "std_reward": 1.9174329601274307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-08T16:56:24.632879"}
tqc-LiftCube-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fcdbb14f76c9664bbf1b5514651b6a4d87686303396bb9a835ef6ea6bb8b8ae1
3
  size 3419898
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd7d75ef412e0da5b4112eb41cbd734a985b108c356d0cd4e273e2168b50db1c
3
  size 3419898
tqc-LiftCube-v0/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function MultiInputPolicy.__init__ at 0x7fdd147db370>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fdd147eef00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -83,12 +83,12 @@
83
  "__module__": "stable_baselines3.common.buffers",
84
  "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
85
  "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
- "__init__": "<function DictReplayBuffer.__init__ at 0x7fdd15195f30>",
87
- "add": "<function DictReplayBuffer.add at 0x7fdd15195fc0>",
88
- "sample": "<function DictReplayBuffer.sample at 0x7fdd15196050>",
89
- "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fdd151960e0>",
90
  "__abstractmethods__": "frozenset()",
91
- "_abc_impl": "<_abc._abc_data object at 0x7fdd153933c0>"
92
  },
93
  "replay_buffer_kwargs": {},
94
  "train_freq": {
 
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7f1d96d0f370>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f1d96d1f100>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
83
  "__module__": "stable_baselines3.common.buffers",
84
  "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
85
  "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7f1d976cdf30>",
87
+ "add": "<function DictReplayBuffer.add at 0x7f1d976cdfc0>",
88
+ "sample": "<function DictReplayBuffer.sample at 0x7f1d976ce050>",
89
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f1d976ce0e0>",
90
  "__abstractmethods__": "frozenset()",
91
+ "_abc_impl": "<_abc._abc_data object at 0x7f1d976bb900>"
92
  },
93
  "replay_buffer_kwargs": {},
94
  "train_freq": {