{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f90f12fcec0>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [ 11 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [ 3 ], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWVCgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjAZfc2lnbWGUaAgolhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwOFlGgTdJRSlHViLg==", "_mu": "[0. 0. 0.]", "_sigma": "[0.1 0.1 0.1]" }, "start_time": 1676765478541973316, "learning_rate": { ":type:": "", ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "tensorboard_log": "runs/Hopper-v3__td3__361241903__1676765475/Hopper-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAKopTqzGW/M/3oOgWm2ahr/Bp/y+VTjgv82Rp6BJmIY/2quY7npK6T8XJydvEFcCQJiJ5KtL/vq/sL9mNpULc78KmcfC13fxP72Q6BEjpdS/9HohBhuXwb+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu" }, "_episode_num": 3330, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILbKd77eIq0CUhpRSlIwBbJRN6AOMAXSUR0CxmZbhNucddX2UKGgGaAloD0MIY0UNpkGyq0CUhpRSlGgVTegDaBZHQLGiHIbwSap1fZQoaAZoCWgPQwjt8Ndk/WOrQJSGlFKUaBVN6ANoFkdAsabeZ0CA+nV9lChoBmgJaA9DCFDkSdKtaatAlIaUUpRoFU3oA2gWR0Cxq6F6eGwidX2UKGgGaAloD0MISZ7r+3gdq0CUhpRSlGgVTegDaBZHQLGwX4z7/GV1fZQoaAZoCWgPQwhHVn4Z5HWrQJSGlFKUaBVN6ANoFkdAsbUeKm8/U3V9lChoBmgJaA9DCNyEe2U2zqtAlIaUUpRoFU3oA2gWR0Cxud27z06HdX2UKGgGaAloD0MIQSybOVQtq0CUhpRSlGgVTegDaBZHQLG+tBBAv+R1fZQoaAZoCWgPQwjD9Shcp2qrQJSGlFKUaBVN6ANoFkdAscOVFZxJd3V9lChoBmgJaA9DCPZf56YlhKtAlIaUUpRoFU3oA2gWR0CxyHM6mwaBdX2UKGgGaAloD0MIAwr19Em8q0CUhpRSlGgVTegDaBZHQLHNGFAmiQF1fZQoaAZoCWgPQwgm4NdIQpWrQJSGlFKUaBVN6ANoFkdAsdFumCROlHV9lChoBmgJaA9DCD/h7NYCtKtAlIaUUpRoFU3oA2gWR0Cx1bzVUdaMdX2UKGgGaAloD0MItp22RjzLq0CUhpRSlGgVTegDaBZHQLHaCwy6+WZ1fZQoaAZoCWgPQwiazHhbAcarQJSGlFKUaBVN6ANoFkdAsd7XKs+3Y3V9lChoBmgJaA9DCANd+wK60KtAlIaUUpRoFU3oA2gWR0Cx46d0mtyQdX2UKGgGaAloD0MI5WIMrHM7lkCUhpRSlGgVTWkBaBZHQLHlZGdZq211fZQoaAZoCWgPQwgcmUf+8MqrQJSGlFKUaBVN6ANoFkdAseo3WuoxYnV9lChoBmgJaA9DCA/Tvrl3oKtAlIaUUpRoFU3oA2gWR0Cx7wnpwCKadX2UKGgGaAloD0MIKgDGM0i4q0CUhpRSlGgVTegDaBZHQLHz0hd+ocd1fZQoaAZoCWgPQwimR1M9uaGWQJSGlFKUaBVNlAFoFkdAsfXDPWxyGXV9lChoBmgJaA9DCHapEfohratAlIaUUpRoFU3oA2gWR0Cx+oUbHZK4dX2UKGgGaAloD0MIsMvwn65xn0CUhpRSlGgVTS0CaBZHQLH9PBqsU7F1fZQoaAZoCWgPQwjNPo9R/sSrQJSGlFKUaBVN6ANoFkdAsgH9PpIMB3V9lChoBmgJaA9DCNEINq5PvqtAlIaUUpRoFU3oA2gWR0CyBr9Dtw71dX2UKGgGaAloD0MIUtSZe1jDq0CUhpRSlGgVTegDaBZHQLILfb1yvLZ1fZQoaAZoCWgPQwh8taM4d1GsQJSGlFKUaBVNtQNoFkdAsg//f0mMO3V9lChoBmgJaA9DCNUjDW7jqatAlIaUUpRoFU3oA2gWR0CyFNlXvH94dX2UKGgGaAloD0MI7xr0pWejq0CUhpRSlGgVTegDaBZHQLId/FlTWG11fZQoaAZoCWgPQwg6B8+E3kKqQJSGlFKUaBVNeQNoFkdAsiI/UMG5c3V9lChoBmgJaA9DCLPviuC3HqtAlIaUUpRoFU3oA2gWR0CyJv2S6lLwdX2UKGgGaAloD0MI4c/wZjUIq0CUhpRSlGgVTegDaBZHQLIrySaVlf91fZQoaAZoCWgPQwgz+tFwmnijQJSGlFKUaBVNvQJoFkdAsi8w1EVnEnV9lChoBmgJaA9DCIrIsIrX25lAlIaUUpRoFU3ZAWgWR0CyMXe2RaHLdX2UKGgGaAloD0MIiIGufeHElECUhpRSlGgVTWgBaBZHQLIzMps41gp1fZQoaAZoCWgPQwik374OLBaaQJSGlFKUaBVN1wFoFkdAsjV6bNKRMnV9lChoBmgJaA9DCB5ssdtfSalAlIaUUpRoFU13A2gWR0CyOc7qMWGidX2UKGgGaAloD0MIX/BpTj7lmkCUhpRSlGgVTbMBaBZHQLI79RQaaTh1fZQoaAZoCWgPQwinID8bwRCrQJSGlFKUaBVN6ANoFkdAskDeLjxTbXV9lChoBmgJaA9DCKIlj6cNRqVAlIaUUpRoFU0DA2gWR0CyRKrP+n63dX2UKGgGaAloD0MIJsRcUqWglECUhpRSlGgVTXwBaBZHQLJGiPnSv1V1fZQoaAZoCWgPQwixGeCChGaoQJSGlFKUaBVNHgNoFkdAskpwkZ75VXV9lChoBmgJaA9DCKabxCAoFaNAlIaUUpRoFU1uAmgWR0CyTXl1nuiOdX2UKGgGaAloD0MIDkqYafuPoUCUhpRSlGgVTTQCaBZHQLJQK1/Ue+51fZQoaAZoCWgPQwjPv132C6GXQJSGlFKUaBVNjQFoFkdAslIQR15jY3V9lChoBmgJaA9DCJOP3QUChqJAlIaUUpRoFU2yAmgWR0CyVVpiy6czdX2UKGgGaAloD0MI0LhwIGQSoECUhpRSlGgVTScCaBZHQLJYAr/sE7p1fZQoaAZoCWgPQwgQQGoT9w6cQJSGlFKUaBVNxQFoFkdAslopY+0PYnV9lChoBmgJaA9DCFRVaCB+MahAlIaUUpRoFU00A2gWR0CyXg8UM5OrdX2UKGgGaAloD0MIMEymCtb5l0CUhpRSlGgVTY0BaBZHQLJf8cz67/Z1fZQoaAZoCWgPQwhfmEwVLHOrQJSGlFKUaBVN6ANoFkdAsmS0Hoouw3V9lChoBmgJaA9DCDifOlZpPplAlIaUUpRoFU2bAWgWR0CyZqj28IzFdX2UKGgGaAloD0MIt0PDYqRSo0CUhpRSlGgVTaoCaBZHQLJpqc94eLh1fZQoaAZoCWgPQwjoMF9eIHGsQJSGlFKUaBVN6ANoFkdAsm3u/Ho5gnV9lChoBmgJaA9DCERMiSRafJVAlIaUUpRoFU1+AWgWR0Cyb5ClabF1dX2UKGgGaAloD0MIWcSww5iFlUCUhpRSlGgVTW0BaBZHQLJxIAsTWXl1fZQoaAZoCWgPQwhXJvxSz/iWQJSGlFKUaBVNnAFoFkdAsnLiYsunM3V9lChoBmgJaA9DCPbQPlYoyqtAlIaUUpRoFU3oA2gWR0Cyd1I//vORdX2UKGgGaAloD0MIZMvydTEUq0CUhpRSlGgVTegDaBZHQLJ8NSdOIqN1fZQoaAZoCWgPQwgsDfyoZoKVQJSGlFKUaBVNZwFoFkdAsn32rlvIfnV9lChoBmgJaA9DCAN7TKQk+pdAlIaUUpRoFU2RAWgWR0Cyf+TT8YQ8dX2UKGgGaAloD0MIM6SK4kUKq0CUhpRSlGgVTegDaBZHQLKEwRe1KGt1fZQoaAZoCWgPQwg4Sl6dI8qmQJSGlFKUaBVNDQNoFkdAsoiWclPac3V9lChoBmgJaA9DCHPZ6JxXxqhAlIaUUpRoFU1bA2gWR0CyjMUp7TlUdX2UKGgGaAloD0MIaxFRTC5GpECUhpRSlGgVTbECaBZHQLKQGBYmsvJ1fZQoaAZoCWgPQwiOsKiI88uqQJSGlFKUaBVN6ANoFkdAspls/nnuA3V9lChoBmgJaA9DCKt3uB0acatAlIaUUpRoFU3oA2gWR0Cynlcyad+YdX2UKGgGaAloD0MI9KYiFY6PqkCUhpRSlGgVTegDaBZHQLKjQyIYWLx1fZQoaAZoCWgPQwhRMjm1m2qqQJSGlFKUaBVN6ANoFkdAsqg3YzzmOnV9lChoBmgJaA9DCGGOHr9f96RAlIaUUpRoFU3fAmgWR0Cyq88NhE0BdX2UKGgGaAloD0MIXg8mxX/SqkCUhpRSlGgVTaQDaBZHQLKwV863iJh1fZQoaAZoCWgPQwg9mBQfb1qWQJSGlFKUaBVNkAFoFkdAsrJKvLX+VHV9lChoBmgJaA9DCCYapODRXK1AlIaUUpRoFU3cA2gWR0CytxbRF7UodX2UKGgGaAloD0MIODKP/EE7q0CUhpRSlGgVTegDaBZHQLK76vJA+px1fZQoaAZoCWgPQwh1HhX//7anQJSGlFKUaBVNJgNoFkdAsr/O/TLGJnV9lChoBmgJaA9DCPyO4bG/vaBAlIaUUpRoFU02AmgWR0CywolawD/3dX2UKGgGaAloD0MIH0jeOTTNn0CUhpRSlGgVTfoBaBZHQLLE+hl18st1fZQoaAZoCWgPQwggs7PoTbyeQJSGlFKUaBVN9QFoFkdAssdpXA/LT3V9lChoBmgJaA9DCBR4J58eEadAlIaUUpRoFU0nA2gWR0Cyy0q+nIhhdX2UKGgGaAloD0MIYeEkze86kkCUhpRSlGgVTUcBaBZHQLLM3etjkMl1fZQoaAZoCWgPQwi5Nem2dNyaQJSGlFKUaBVNsgFoFkdAss7080UGmnV9lChoBmgJaA9DCP5l9+TRiZpAlIaUUpRoFU3hAWgWR0Cy0UtOM2m6dX2UKGgGaAloD0MIvwrw3ea4p0CUhpRSlGgVTTYDaBZHQLLVPUu+RHR1fZQoaAZoCWgPQwiiJCTSRkSVQJSGlFKUaBVNaQFoFkdAstb7MlkYoHV9lChoBmgJaA9DCB+eJciYZJVAlIaUUpRoFU1oAWgWR0Cy2LVvIfbLdX2UKGgGaAloD0MIUmUYd9PvqkCUhpRSlGgVTegDaBZHQLLdhDHwPRR1fZQoaAZoCWgPQwjSNCiady+rQJSGlFKUaBVN6ANoFkdAsuJWmwaBJHV9lChoBmgJaA9DCPoK0oy1S6tAlIaUUpRoFU3oA2gWR0Cy5zNaQmu1dX2UKGgGaAloD0MI6L6c2TblqkCUhpRSlGgVTegDaBZHQLLr/pjMFEB1fZQoaAZoCWgPQwgF3V7ScASgQJSGlFKUaBVN+gFoFkdAsu5t0Rvm5nV9lChoBmgJaA9DCCXK3lLOzZpAlIaUUpRoFU3gAWgWR0Cy8L9xp+MIdX2UKGgGaAloD0MIVMkAUKVon0CUhpRSlGgVTTACaBZHQLLzc7sOXmh1fZQoaAZoCWgPQwgwEtpyVqWmQJSGlFKUaBVNBANoFkdAsvcsNwzch3V9lChoBmgJaA9DCJuuJ7qejKRAlIaUUpRoFU29AmgWR0Cy+ogXuVopdX2UKGgGaAloD0MIMxgjEmUXpECUhpRSlGgVTasCaBZHQLL907KaG6B1fZQoaAZoCWgPQwirWz0nvYSlQJSGlFKUaBVNBANoFkdAswGTDDTBqXV9lChoBmgJaA9DCDaSBOEi+qJAlIaUUpRoFU2YAmgWR0CzBIsA7xNJdX2UKGgGaAloD0MI+py7Xa9Jq0CUhpRSlGgVTegDaBZHQLMI5zAvcrR1fZQoaAZoCWgPQwhGI59XZCirQJSGlFKUaBVN6ANoFkdAsw0+mj0tiHV9lChoBmgJaA9DCGXggJb+eJdAlIaUUpRoFU2YAWgWR0CzDwBQSBbwdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 990000, "buffer_size": 1, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f90f0def100>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }