{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "reset_noise": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f08a7f1c080>" }, "verbose": 1, "policy_kwargs": { "log_std_init": -3.67, "net_arch": [ 64, 64 ], "use_sde": true }, "observation_space": { ":type:": "", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 2 ], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 1 ], "low": "[-1.]", "high": "[1.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 50016, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1670943695022008941, "learning_rate": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "tensorboard_log": "runs/MountainCarContinuous-v0__sac__1826025095__1670943692/MountainCarContinuous-v0", "lr_schedule": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAKYUF78kmwa8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg==" }, "_episode_num": 338, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFe04iX6ZYyMAWyUS0+MAXSUR0ByLZMK1G9YdX2UKGgGR0BXlRWo3rD7aAdLS2gIR0ByNK7NB4UvdX2UKGgGR0BWuYIWxhUjaAdLdmgIR0ByQqq0dBBzdX2UKGgGR0BWxlRtP558aAdLb2gIR0ByTV3Qla8pdX2UKGgGR0BWvytA9mpVaAdLa2gIR0ByWAG+sYEXdX2UKGgGR0BW3+eSSvC/aAdLa2gIR0ByZd+KCQLedX2UKGgGR0BW900vXbudaAdLdGgIR0BycLQ5WBBidX2UKGgGR0BXcluFYdQwaAdLV2gIR0Byeye4Cp3pdX2UKGgGR0BXRG7OE/SqaAdLbWgIR0ByhgPVd5Y6dX2UKGgGR0BQ5Eo8ZDRdaAdNAAJoCEdAcr8D2alUInV9lChoBkdAUXt6ol2NemgHTS4CaAhHQHL9viPyTZB1fZQoaAZHQFT5iLEUCaJoB00UAWgIR0BzHQVgx8D0dX2UKGgGR0BP28Z9/jKgaAdN8gJoCEdAc27vo/zJ63V9lChoBkdAVy1NN8E3bWgHS3JoCEdAc31uTA31jHV9lChoBkdAVzQA80UGmmgHS3FoCEdAc4ieN1hb4nV9lChoBkdAU/W7TUiIL2gHTXgBaAhHQHO2ys8xKxt1fZQoaAZHQFdjLsa86FNoB0tyaAhHQHPGTX8O09h1fZQoaAZHQFcnGgBcRlJoB0uEaAhHQHPWBfv4M4N1fZQoaAZHQFZFnKW9lEtoB0vZaAhHQHPtvHcUM5R1fZQoaAZHQFclElE7W/doB0t5aAhHQHP9jJQtSQ51fZQoaAZHQFcu28Zk079oB0t8aAhHQHQN+2uxKQJ1fZQoaAZHQFdR75VOsT5oB0tuaAhHQHQetSEUTL51fZQoaAZHQFdHnjyWiURoB0tyaAhHQHQro9TxXn11fZQoaAZHQFcU3cHnln1oB0t8aAhHQHQ8fK2a2F51fZQoaAZHQFdp8ujASFpoB0t7aAhHQHRNV3Qla8p1fZQoaAZHQFYwHQQcxTNoB0vbaAhHQHRq2WyC4Bp1fZQoaAZHQFdDq2SdOItoB0twaAhHQHR3e1WsA/91fZQoaAZHQFdEEUj9n9NoB0traAhHQHSDdY4hllN1fZQoaAZHQFd1XrdFfAtoB0tdaAhHQHSPJe/pMYd1fZQoaAZHQFbH6E8JUo9oB0uNaAhHQHSikHyEtd11fZQoaAZHQFeItXgccVBoB0thaAhHQHSuSm65Gz91fZQoaAZHQFcaeKsMiKRoB0uIaAhHQHS+EuxrzoV1fZQoaAZHQFZVuy/sVtZoB0u2aAhHQHTVfp6hQFd1fZQoaAZHQFefs67ulXRoB0tIaAhHQHTdZuAI6bR1fZQoaAZHQFfkuV5a/ypoB0tIaAhHQHTlYoZydWh1fZQoaAZHQFeZcv/R3NdoB0tQaAhHQHTxtzOoo/l1fZQoaAZHQFfMAHVwxWVoB0tYaAhHQHT+SVjZtel1fZQoaAZHQFeChbGFSKpoB0tJaAhHQHUG3s9jgAJ1fZQoaAZHQFdofNiYsupoB0tbaAhHQHUTeqWC2+h1fZQoaAZHQFcjCSidrftoB0tiaAhHQHUgMEV32VV1fZQoaAZHQFc9ub7TDwZoB0tYaAhHQHUo6uB+Wnl1fZQoaAZHQFdLuIAOrhloB0tgaAhHQHU1j6BRQ791fZQoaAZHQFeq59E1EVpoB0tYaAhHQHVBx0uDjBF1fZQoaAZHQFeWVaOgg5loB0tbaAhHQHVN6G1x82J1fZQoaAZHQFdpiONo8IRoB0tRaAhHQHVZ9G3F1jl1fZQoaAZHQFb+MqjJuEVoB0tcaAhHQHViXW4EwFl1fZQoaAZHQFd1zLwF1SxoB0tWaAhHQHVuWlImPYF1fZQoaAZHQFd0KHwgDA9oB0tOaAhHQHV501/DtPZ1fZQoaAZHQFfKX1J17ppoB0tWaAhHQHWBy7f51vF1fZQoaAZHQFeBXiR4hU1oB0tNaAhHQHWNXAh0Qsh1fZQoaAZHQFeBqn3ta6loB0tfaAhHQHWZHC4z7/J1fZQoaAZHQFchCuloDgZoB0tdaAhHQHWk2K/Efkp1fZQoaAZHQFeP+6y0KJFoB0tPaAhHQHWs3t8eCCl1fZQoaAZHQFdF5KODJ2doB0tSaAhHQHW46y0KJEZ1fZQoaAZHQFeL9w3o9s9oB0tJaAhHQHXBJjDsMRZ1fZQoaAZHQFepFocrAgxoB0tvaAhHQHXNgSamXPZ1fZQoaAZHQFd1kP+XJHRoB0tWaAhHQHXZgJb+tKZ1fZQoaAZHQFexdgOSW7hoB0twaAhHQHXqEzCUHIJ1fZQoaAZHQFeGh24d6s1oB0tkaAhHQHX2Q6ySmqJ1fZQoaAZHQFaczUI9kjJoB0u6aAhHQHYK0nXumaZ1fZQoaAZHQFeDp2ll9SdoB0t1aAhHQHYa8tPHktF1fZQoaAZHQFew4CZF5OdoB0tQaAhHQHYm67iADq51fZQoaAZHQFd7tTUAks1oB0tiaAhHQHYzIVM23rl1fZQoaAZHQFeUyxzJZGNoB0tqaAhHQHY/Y9LYf4h1fZQoaAZHQFfVa1kUbkxoB0tKaAhHQHZHljqfOD91fZQoaAZHQFfH5+6RQrNoB0tXaAhHQHZTrQ1JlJ91fZQoaAZHQFbH8a4tpVVoB0txaAhHQHZju5vtMPB1fZQoaAZHQFe3HC4z7/JoB0tZaAhHQHZsJp35eqt1fZQoaAZHQFdi8v24/eNoB0t0aAhHQHZ7/Sc9W6t1fZQoaAZHQFfjOZb6guhoB0tOaAhHQHaESLAHmih1fZQoaAZHQFdiZZB9kSVoB0t9aAhHQHaUgn6VMVV1fZQoaAZHQFfKZuQ6p5xoB0tgaAhHQHagpo9LYf51fZQoaAZHQFe/pL26ClJoB0tcaAhHQHasnUpd8iR1fZQoaAZHQFflT3IuGsVoB0uhaAhHQHbALeuV5bB1fZQoaAZHQFbH2w3YL9doB0uiaAhHQHbToNZvDP51fZQoaAZHQFeed3B55Z9oB0tYaAhHQHbfqwD/2kB1fZQoaAZHQFd1aKUFB6doB0tYaAhHQHbru6RQrMF1fZQoaAZHQFboNEgGKQ9oB0vHaAhHQHcEITfzjFR1fZQoaAZHQFfz7Ikqto1oB0tTaAhHQHcQJpWV/tp1fZQoaAZHQFgWE9t/FzdoB0tgaAhHQHccYa5wwTN1fZQoaAZHQFdbNSIgvDhoB0twaAhHQHcpTAeq7yx1fZQoaAZHQFdMjPv8ZUFoB0t7aAhHQHc6IQnQY1p1fZQoaAZHQFfgdAgPmPpoB0tXaAhHQHdG6ltTDO11fZQoaAZHQFd0iRGMGX5oB0tZaAhHQHdPcoMKCxx1fZQoaAZHQFftBKtga3toB0tfaAhHQHdbpLytmth1fZQoaAZHQFd7z+WGATZoB0uSaAhHQHdv3R9gF5h1fZQoaAZHQFfZC+UQkHFoB0txaAhHQHd8NXDFZPl1fZQoaAZHQFf7nBciW3VoB0teaAhHQHeH8rqdH2B1fZQoaAZHQFfJSxJNCZ5oB0tQaAhHQHeTmi+L3sZ1fZQoaAZHQFf3bdJrcj9oB0tTaAhHQHefOOGTLW91fZQoaAZHQFe+IXTEzftoB0tNaAhHQHenOKCQLeB1fZQoaAZHQFf7Mz/IbOxoB0teaAhHQHey/xc3VCp1fZQoaAZHQFdP4dp7CzloB0uOaAhHQHfDJzLfUF11fZQoaAZHQFdYD+R5kbxoB0t2aAhHQHfTS7Xg9/11fZQoaAZHQFcybgCOmzloB0t+aAhHQHfjLT+ee4F1fZQoaAZHQFdklzEJjUdoB0tuaAhHQHfvchTwUg11fZQoaAZHQFfgbyYoiLVoB0teaAhHQHf8E6tDD0l1fZQoaAZHQFevBY3eenRoB0tRaAhHQHgInN1QqI91fZQoaAZHQFfJbADaGpNoB0tzaAhHQHgVgMlTm4l1fZQoaAZHQFe+ADJU5uJoB0tOaAhHQHgh84T9KmN1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 50016, "buffer_size": 1, "batch_size": 512, "learning_starts": 0, "tau": 0.01, "gamma": 0.9999, "gradient_steps": 32, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f08a7f60f00>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "target_entropy": -1.0, "log_ent_coef": null, "ent_coef": 0.1, "target_update_interval": 1, "ent_coef_optimizer": null, "batch_norm_stats": [], "batch_norm_stats_target": [] }