--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-gesture-prediction-9-classes results: [] --- # roberta-finetuned-gesture-prediction-9-classes This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5988 - Precision: 0.6628 - Recall: 0.7547 - F1: 0.7058 - Accuracy: 0.8457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.044494533766864e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.28 | 1.0 | 87 | 0.8146 | 0.5247 | 0.6511 | 0.5811 | 0.7895 | | 0.6127 | 2.0 | 174 | 0.6237 | 0.6171 | 0.7153 | 0.6626 | 0.8267 | | 0.3742 | 3.0 | 261 | 0.5970 | 0.6620 | 0.7577 | 0.7066 | 0.8485 | | 0.216 | 4.0 | 348 | 0.5988 | 0.6628 | 0.7547 | 0.7058 | 0.8457 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2