--- language: - fr license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small French results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 fr type: mozilla-foundation/common_voice_11_0 config: fr split: test args: fr metrics: - type: wer value: 15.38 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli fr type: facebook/voxpopuli config: fr split: test args: fr metrics: - type: wer value: 16.29 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs fr_fr type: google/fleurs config: fr_fr split: test args: fr_fr metrics: - type: wer value: 13.98 name: Wer --- # Whisper Small French This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fr dataset. It achieves the following results on the evaluation set: - Loss: 0.00 - WER on `mozilla-foundation/common_voice_11_0` FR (with normalization): 15.38 % - WER on `facebook/voxpopuli` FR (with normalization): 16.29 % - WER on `google/fleurs` fr_fr (with normalization): 13.98 % ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2