--- language: - fr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large French Cased results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 fr type: mozilla-foundation/common_voice_11_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 11.909957777883202 --- # Whisper Large French Cased This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_11_0 fr dataset. It achieves the following results on the evaluation set: - Loss: 0.2962 - Wer: 11.9100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3357 | 0.2 | 1000 | 0.3994 | 16.1523 | | 0.3026 | 0.4 | 2000 | 0.3802 | 15.2403 | | 0.2904 | 0.6 | 3000 | 0.3389 | 14.0045 | | 0.2407 | 0.8 | 4000 | 0.3135 | 12.7947 | | 0.2451 | 1.0 | 5000 | 0.2962 | 11.9100 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2