from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM dataset = load_dataset("CarperAI/openai_summarize_tldr") val_prompts = [sample["prompt"] for sample in dataset["valid"]] kwargs = { "max_new_tokens": 50, "do_sample": True, "top_k": 0, "top_p": 0.95, "temperature": 0.5 } model = AutoModelForCausalLM.from_pretrained("pvduy/ppo_pythia6B_sample") model.eval() tokenizer = AutoTokenizer.from_pretrained("pvduy/ppo_pythia6B_sample") tokenizer.pad_token_id = tokenizer.eos_token_id count = 0 for prompt in val_prompts: output_tk = tokenizer(prompt, return_tensors="pt") outputs = model.generate(output_tk.input_ids, attention_mask=output_tk.attention_mask, **kwargs) print("Prompt:", prompt) print("Output:", tokenizer.decode(outputs[0], skip_special_tokens=True).split("TL;DR:")[1].strip()) print("=================================") count += 1 if count == 10: break