--- language: "pt" widget: - text: "O paciente recebeu no hospital e falou com a médica" - text: "COMO ESQUEMA DE MEDICAÇÃO PARA ICC PRESCRITO NO ALTA, RECEBE FUROSEMIDA 40 BID, ISOSSORBIDA 40 TID, DIGOXINA 0,25 /D, CAPTOPRIL 50 TID E ESPIRONOLACTONA 25 /D." - text: "ESTAVA EM USO DE FUROSEMIDA 40 BID, DIGOXINA 0,25 /D, SINVASTATINA 40 /NOITE, CAPTOPRIL 50 TID, ISOSSORBIDA 20 TID, AAS 100 /D E ESPIRONOLACTONA 25 /D." datasets: - MacMorpho --- # POS-Tagger Bio Portuguese We fine-tuned the BioBERTpt(all) model with the MacMorpho corpus for the Post-Tagger task, with 10 epochs, achieving a general F1-Score of 0.9818. Metrics: ``` Precision Recall F1 Suport accuracy 0.98 38320 macro avg 0.95 0.94 0.94 38320 weighted avg 0.98 0.98 0.98 38320 F1: 0.9818 Accuracy: 0.9818 ``` Parameters: ``` nclasses = 27 nepochs_total = 30 nepochs_stop = 12 (stop in 12th because early stop) batch_size = 32 batch_status = 32 learning_rate = 1e-5 early_stop = 3 max_length = 200 ``` ## Acknowledgements This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. ## Citation ``` coming soon ``` ## Questions? Please, post a Github issue on the [NLP Portuguese Chunking](https://github.com/HAILab-PUCPR/nlp-portuguese-chunking).