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Recurrent Neural Networks (RNN)

Time Step N
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Problems with RNN (among others)

1. Slow computation for long sequences
2. Vanishing or exploding gradients

3. Difficulty in accessing information from long time ago
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Introducing the Transformer
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Notations

Input matrix (sequence, d__./)
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What is an input embedding?

Original sentence
(tokens)

Input IDs (position in
the vocabulary)

=
l

—

l l

952.207 171.411 621.659 776.562 6422.693 171.411
5450.840 3276.350 1304.051 5567.288 6315.080 3276.350
Embedding 1853.448 9192.819 0.565 58.942 9358.778 9192.819
(vector of size 512)
1.658 3633.421 7679.805 2716.194 2141.081 3633.421
2671.529 8390.473 4506.025 5119.949 735.147 8390.473

We define d,o4e1 = 512, which represents the size of the embedding vector of each word
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What is positional encoding?

« We want each word to carry some information about its position in the sentence.

« We want the model to treat words that appear close to each other as “close” and words that are
distant as “distant”.

« We want the positional encoding to represent a pattern that can be learned by the model.
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Original sentence

Embedding
(vector of size 512)

Position Embedding
(vector of size 512).
Only computed once
and reused for every
sentence during
training and inference.

Encoder Input
(vector of size 512)
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What is positional encoding?

PE(pos, 2i)

PE(pos,2i + 1)

pos

sin

CoS

21
10000%modet

pos

Sentence 1

21
10000%modet

Sentence 2

We only need to compute the positional encodings once and
then reuse them for every sentence, no matter if it is training or

inference.
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Why trigonometric functions?

Trigonometric functions like cos and sin naturally represent a pattern that the model can recognize as continuous, so relative positions are
easier to see for the model. By watching the plot of these functions, we can also see a regular pattern, so we can hypothesize that the
model will see it too.
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300
S
= - 0.00
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—0.50
100
—0.75
0 —1.00
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What is Self-Attention?

Self-Attention allows the model to relate words to each other. T
Attention(Q, K,V) = softmax \/d_
K

In this simple case we consider the sequence length seq = 6 and d,,g4e1 = di= 512. 4

The matrices Q, Kand V are just the input sentence.

YOUR CAT Is A LOVELY CAT b3
YOUR 0.268 0.119 0.134 0.148 0.179 0.152 1
CAT 0.124 0.278 0.201 0.128 0.154 0.115 1
* all values are random
SOﬂ:m ax — IS 0.147 0.132 0.262 0.097 0.218 0.145 1 :
(6,512) (512, 6)
A 0.210 0.128 0.206 0.212 0.119 0.125 1

’ 5 1 2 LOVELY 0.146 0.158 0.152 0.143 0.227 0.174 1

CAT 0.195 0.114 0.203 0.103 0.157 0.229 1

* for simplicity | considered only one head, which makes d,, 4o = dy. (6, 6)
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How to compute Self-Attention?

YOUR

LOVELY

YOUR

0.268

0.124

0.147

0.210

0.146

0.195

0.119

0.278

0.132

0.128

0.158

0.114

0.134

0.201

0.262

0.206

0.152

0.203

(6, 6)

0.148

0.128

0.097

0.212

0.143

0.103

LOVELY

0.179

0.154

0.218

0.119

0.227

0.157

CAT

0.152

0.115

0.145

0.125

0.174

0.229

(6, 512)

T

Q
Jdi

Attention(Q, K,V) = softmax %4

Each row in this matrix captures not only the
meaning (given by the embedding) or the position

P in the sentence (represented by the positional
encodings) but also each word's interaction with
other words.

(6,512)
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Self-Attention in detail

+ Self-Attention is permutation invariant.

+ Self-Attention requires no parameters. Up to now the interaction between words
has been driven by their embedding and the positional encodings. This will
change later.

*  We expect values along the diagonal to be the highest.

, . . . YOUR CAT Is A LOVELY CAT
« If we don't want some positions to interact, we can always set their values to -eo
before applying the softmax in this matrix and the model will not learn those
interactions. We will use this in the decoder.
YOUR 0.268 0.119 0.134 0.148 0.179 0.152
CAT 0.124 0.278 0.201 0.128 0.154 0.115
IS 0.147 0.132 0.262 0.097 0.218 0.145
A 0.210 0.128 0.206 0.212 0.119 0.125
LOVELY 0.146 0.158 0.152 0.143 0.227 0.174
CAT 0.195 0.114 0.203 0.103 0.157 0.229
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Multi-head Attention

. QK"
Attention(Q, K,V) = softmax 14

Jax

MultiHead(Q,K,V) = Concat(head; ...head,)W?°
head; = Attention(QW,*, KWK, vw})
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Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

Query = “love”

Keys

ROMANTIC

ACTION

SCIFI

HORROR

COMEDY

Values

TITANIC

THE DARK KNIGHT

INCEPTION

THE SHINING

THE INTOUCHABLES

* this could be a Python dictionary
or a database table.
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Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

Keys Values
A A
[ f |
TITANIC
1" n" ACTION THE DARK KNIGHT
Query = “love
SCIFI INCEPTION
HORROR THE SHINING

COMEDY THE INTOUCHABLES

* this could be a Python dictionary
or a database table.
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What is layer

Batch of 3 items

ITEM 1

M1

ITEM 2

03

Xj — Hj
2
oj + €

normalization?

ITEM 3

M3

03

We also introduce two parameters, usually called gamma (multiplicative)
and beta (additive) that introduce some fluctuations in the data, because
maybe having all values between 0 and 1 may be too restrictive for the
network. The network will learn to tune these two parameters to
introduce fluctuations when necessary.
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What is Masked Multi-Head Attention?

Our goal is to make the model causal: it means the output at a certain position can only depend on the
words on the previous positions. The model must not be able to see future words.

YOUR

LOVELY

YOUR

0.268

0.124

0.147

0.210

0.146

0.195

0.278

0.132

0.128

0.158

0.114

0.262

0.206

0.152

0.203

0.212

0.143

0.103

LOVELY

0.227

0.157

CAT

0.229

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes



https://github.com/hkproj/transformer-from-scratch-notes

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

42 L

Add & Norm

Masked
Multi-Head
Attention

At
)
@ Positional

Encoding
Output

Embedding

!

Outputs
(shifted right)

_>. ' .
Input —> X

(seq, drodel)

_>. ' .

KT

Q
Vi

Attention(Q, K,V) = softmax
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model = size of the embedding vector
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Inference and training of a Transformer model
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Training

NP4

| love you very much
S y Y

I I Ti amo molto
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Ti amo molto <EOS>

T [ ) [ )
rd I n I n g * This is called the “label” or the "target”

Time Step =1 . . Softmax > Cross Entropy Loss
It all happens in one time step! (oo vacabLsize)

The encoder outputs, for each word a vector that not only captures
its meaning (the embedding) or the position, but also its interaction Linear
with other words by means of the multi-head attention.

(seq, dimoder) = (seq, vocab_size)

QOutput
Probabilities

Encoder Decoder
Output Output
(seq, dmodel) (seq, drmodel)
T e ‘ ™\ I Add & Norm |<\
A6\ N Multi-Head
Attention
Nx
1> Decoder
Add & Norm
Nx Add & Norm Maslked
Multi-Head Multi-Head
Attention Attention
T T A ’ A )
\_ J U —
Positional o) 4 Positional
Encoding ¥ Encoding
Encoder Decoder Tout Output
Input Input I Embedding I | Embedding |
(sed, dmodel) (seq diodel)
Inputs Outputs
T T (shifted right)
. We prepend the <SOS> token at the beginning. That's
<SOS> | love you very much <EOS> <SOS> Ti amo molto Prep 9 9

why the paper says that the decoder input is shifted right.
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Inference

NP4

| love you very much
S y Y

I I Ti amo molto
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Inference T
Time Step =1

We select a token from the vocabulary corresponding to the position

Softmax . .
of the token with the maximum value.

(seq, vocab_size)

!

Linear The output of the last layer is commonly known as logits
(seq, dodel) = (seq, vocab_size)

Output
Probabilities

Encoder Decoder
AL Output
(seq, dmodel) (seq, drmodel)
| Add & Norm |<\
£dd & Horm Multi-Head
Attention
Nx
Nx Add & Norm
Add & Norm VER
Multi-Head Multi-Head
Attention Attention
A ) A )
\_ J \_ ——
Positional o) @ Positional
Encodin Ei i
Encoder Decoder ’ ot Output reoans
Input Input I Embedding I I Embedding I
(seq, dinodel) (seq, drmodel) out Outout
nputs utputs
T T (shifted right)
<SOS>! love you very much<EOS> <SOS> * Both sequences will have same length thanks to padding
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amo

Inference
Time Step = 2

Since decoder input now contains two tokens, we

Softmax
select the softmax corresponding to the second token.

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

QOutput
Probabilities

((Add & Norm ]

Decoder
Output

(seq, drncvdel)

J

| Add & Norm |<-\

Sl Mult-Head

: Attention
Use the encoder output from the first Nx
. Decoder

time step Nx Add & Norm
Add & Norm VER

Multi-Head Multi-Head

Attention Attention

A ) A p)

Q J \ —
Positional A Positional
Encodii N i
Decoder ncoding | Encoding
nput Output
Input I Embedding I I Embedding l
(seq, dmodel)
Inputs Outputs
(shifted right)
<SOS>! love you very much<EOS> <SOS> ti Append the previously output word to the decoder input
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molto

Inference
Time Step = 3

Since decoder input now contains three tokens, we

Softmax
select the softmax corresponding to the third token.

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

QOutput
Probabilities

((Add & Norm ]

Decoder
Output

(seq, drncvdel)

J
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Sl Mult-Head

: Attention
Use the encoder output from the first Nx
. Decoder

time step Nx Add & Norm
Add & Norm Mas;Ked

Multi-Head Multi-Head

Attention Attention
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Q J \ —
Positional A Positional
Encodii P -
Decoder ncoding | Encoding
nput Output
Input I Embedding I I Embedding l
(seq, dmodel)
Inputs Outputs
(shifted right)
<SOS>! love you very much<EOS> <SOS>tiamo Append the previously output word to the decoder input
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Inference
Time Step =4

Use the encoder output from the first
time step

<SOS>! love you very much<EOS>

<EOS>

Softmax

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

Decoder
Output

(seq, drncvdel)

Decoder

Decoder
Input

(Seq1 dmodel)

<SOS> ti amo molto

Since decoder input now contains four tokens, we
select the softmax corresponding to the fourth token.

QOutput
Probabilities

((Add & Norm ]

J

| Add & Norm |<-\

£od & Nowm Multi-Head
Attention
Nx
Nx Add & Norm
Add & Norm VER
Multi-Head Multi-Head
Attention Attention
A ) A p)

. J —
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Append the previously output word to the decoder input
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Inference strategy

We selected, at every step, the word with the maximum softmax value. This strategy is called greedy and usually does not perform very
well.

A better strategy is to select at each step the top B words and evaluate all the possible next words for each of them and at each step,
keeping the top B most probable sequences. This is the Beam Search strategy and generally performs better.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes



https://github.com/hkproj/transformer-from-scratch-notes

Thanks for watching!

Don’t forget to subscribe for
more amazing content on Al
and Machine Learning!
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