Output

Probabilities
()
Feed
Forward
s N Add & Norm
_ .
el e Multi-Head
Feed Attention
Forward 2 } Nx
~—
Nix Add & Norm
f—>| Add & Norm | T
Multi-Head Multi-Head
Attention Attention
t L
L y, \. —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Transformer from scratch

Umar Jamil

Downloaded from: hitps://github.com/hkproj/transformer-from-scratch-notes

Video: hitps:

www.youtube.com/watchegv=bCz4OMemCcA

License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
https: //creativecommons.org/licenses/by-nc/4.0 /legalcode

Not for commercial use

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes
https://github.com/hkproj/transformer-from-scratch-notes
https://www.youtube.com/watch?v=bCz4OMemCcA
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Recurrent Neural Networks (RNN)

Time Step N

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Problems with RNN (among others)

1. Slow computation for long sequences
2. Vanishing or exploding gradients

3. Difficulty in accessing information from long time ago

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Introducing the Transformer

Output
Probabilities

Linear

(N
[Add & Norm |
Feed
Forward
s 1 ™\ | Add & Norm :
r~>LAdd & Norm) Multi-Head
Feed Attention
Forward T Nx
-~
Nix Add & Norm
f—>| Add & Norm | T
Multi-Head Multi-Head
Attention Attention
L L
— J \ —)
Positional D @ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Qutputs

(shifted right)

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Notations

Input matrix (sequence, d__./)

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Encoder

.

()
Add & Norm

Feed
Forward

Nx | —(TAdd & Norm)

L

Multi-Head
Attention

T S

Positional A.‘_

Encoding

Input
Embedding

Inputs

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is an input embedding?

Original sentence
(tokens)

Input IDs (position in
the vocabulary)

=
l

—

l l

952.207 171.411 621.659 776.562 6422.693 171.411
5450.840 3276.350 1304.051 5567.288 6315.080 3276.350
Embedding 1853.448 9192.819 0.565 58.942 9358.778 9192.819
(vector of size 512)
1.658 3633.421 7679.805 2716.194 2141.081 3633.421
2671.529 8390.473 4506.025 5119.949 735.147 8390.473

We define d,o4e1 = 512, which represents the size of the embedding vector of each word

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Encoder

L

.

()
Add & Norm

Feed
Forward

Nx | —(TAdd & Norm)

Positional
Encoding

Multi-Head
Attention

Embedding

Inputs

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is positional encoding?

« We want each word to carry some information about its position in the sentence.

« We want the model to treat words that appear close to each other as “close” and words that are
distant as “distant”.

« We want the positional encoding to represent a pattern that can be learned by the model.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Original sentence

Embedding
(vector of size 512)

Position Embedding
(vector of size 512).
Only computed once
and reused for every
sentence during
training and inference.

Encoder Input
(vector of size 512)

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is positional encoding?

PE(pos, 2i)

PE(pos,2i + 1)

pos

sin

CoS

21
10000%modet

pos

Sentence 1

21
10000%modet

Sentence 2

We only need to compute the positional encodings once and
then reuse them for every sentence, no matter if it is training or

inference.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Why trigonometric functions?

Trigonometric functions like cos and sin naturally represent a pattern that the model can recognize as continuous, so relative positions are
easier to see for the model. By watching the plot of these functions, we can also see a regular pattern, so we can hypothesize that the
model will see it too.

500 1.00
0.75
400
0.50
- 0.25
300
S
= - 0.00
&
200 -—0.25
—0.50
100
—0.75
0 —1.00

0 250 500 750 1000 1250 1500 1750 2000
Position

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Encoder

Multi-Head
Attention

Positional D
Encoding

Input
Embedding

I

Inputs

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is Self-Attention?

Self-Attention allows the model to relate words to each other. T
Attention(Q, K,V) = softmax \/d_
K

In this simple case we consider the sequence length seq = 6 and d,,g4e1 = di= 512. 4

The matrices Q, Kand V are just the input sentence.

YOUR CAT Is A LOVELY CAT b3
YOUR 0.268 0.119 0.134 0.148 0.179 0.152 1
CAT 0.124 0.278 0.201 0.128 0.154 0.115 1
* all values are random
SOﬂ:m ax — IS 0.147 0.132 0.262 0.097 0.218 0.145 1 :
(6,512) (512, 6)
A 0.210 0.128 0.206 0.212 0.119 0.125 1

’ 5 1 2 LOVELY 0.146 0.158 0.152 0.143 0.227 0.174 1

CAT 0.195 0.114 0.203 0.103 0.157 0.229 1

* for simplicity | considered only one head, which makes d,, 4o = dy. (6, 6)

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

How to compute Self-Attention?

YOUR

LOVELY

YOUR

0.268

0.124

0.147

0.210

0.146

0.195

0.119

0.278

0.132

0.128

0.158

0.114

0.134

0.201

0.262

0.206

0.152

0.203

(6, 6)

0.148

0.128

0.097

0.212

0.143

0.103

LOVELY

0.179

0.154

0.218

0.119

0.227

0.157

CAT

0.152

0.115

0.145

0.125

0.174

0.229

(6, 512)

T

Q
Jdi

Attention(Q, K,V) = softmax %4

Each row in this matrix captures not only the
meaning (given by the embedding) or the position

P in the sentence (represented by the positional
encodings) but also each word's interaction with
other words.

(6,512)

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Self-Attention in detail

+ Self-Attention is permutation invariant.

+ Self-Attention requires no parameters. Up to now the interaction between words
has been driven by their embedding and the positional encodings. This will
change later.

* We expect values along the diagonal to be the highest.

, . . . YOUR CAT Is A LOVELY CAT
« If we don't want some positions to interact, we can always set their values to -eo
before applying the softmax in this matrix and the model will not learn those
interactions. We will use this in the decoder.
YOUR 0.268 0.119 0.134 0.148 0.179 0.152
CAT 0.124 0.278 0.201 0.128 0.154 0.115
IS 0.147 0.132 0.262 0.097 0.218 0.145
A 0.210 0.128 0.206 0.212 0.119 0.125
LOVELY 0.146 0.158 0.152 0.143 0.227 0.174
CAT 0.195 0.114 0.203 0.103 0.157 0.229

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Multi-head Attention

. QK"
Attention(Q, K,V) = softmax 14

Jax

MultiHead(Q,K,V) = Concat(head; ...head,)W?°
head; = Attention(QW,*, KWK, vw})

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Add & Norm

Nx Add & Norm

Multi-Head

Attention Attention(Q,K,V)
S— R
Positional o)
Encoding headl-
Input
Embedding
Inputs
seq = sequence length
drodel = size of the embedding vector
h = number of heads
dk=dv = dmodel/ h

Input — > X =
(seq, drodel)

aenfes

KT
softmax| — |V

Nen

Attention(Q WiQ. Kw¥,vw¥)

d

model

A

seq

softmax (Q—KT)
N

Attention Visualizations

2
= (=
§E 3
= @ B
& e E B 2 £ o 4 = BANAAADNRA
£, o EPeisepgs,% Fis3 S8%%848%%
258 mhgéémggccémg’_“gﬂ!ﬁ Daacodaco
=2 =25 0E o £0 o acf®aq £2588es NEFRFEFET
= e - = .
~osgEEcEoELTILLB LR IMY 2844408
= 8 S Eg82YPCEERE] g g OCEEB8888E2
] g E @ g = B <] W v v vV vy
£ E E a I} a v
<g m g
3
& |
A\ 4 A\ 4 \4

seq

{ I

o
<

Y
d

model

MultiHead(Q, K,V) = Concat(head; ... head,)W?°

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

Query = “love”

Keys

ROMANTIC

ACTION

SCIFI

HORROR

COMEDY

Values

TITANIC

THE DARK KNIGHT

INCEPTION

THE SHINING

THE INTOUCHABLES

* this could be a Python dictionary
or a database table.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

Keys Values
A A
[f |
TITANIC
1" n" ACTION THE DARK KNIGHT
Query = “love
SCIFI INCEPTION
HORROR THE SHINING

COMEDY THE INTOUCHABLES

* this could be a Python dictionary
or a database table.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Encoder

Positional D
Encoding

a4)
Add & Norm

Feed
Forward

Attention

. J

Input
Embedding

I

Inputs

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is layer

Batch of 3 items

ITEM 1

M1

ITEM 2

03

Xj — Hj
2
oj + €

normalization?

ITEM 3

M3

03

We also introduce two parameters, usually called gamma (multiplicative)
and beta (additive) that introduce some fluctuations in the data, because
maybe having all values between 0 and 1 may be too restrictive for the
network. The network will learn to tune these two parameters to
introduce fluctuations when necessary.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Decoder

Output
Probabilities

[)
()
Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Joi)

[Add & Norm |

Masked
Multi-Head
Attention

J

D

Output
Embedding

I

Outputs
(shifted right)

Nx

Positional
Encoding

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

What is Masked Multi-Head Attention?

Our goal is to make the model causal: it means the output at a certain position can only depend on the
words on the previous positions. The model must not be able to see future words.

YOUR

LOVELY

YOUR

0.268

0.124

0.147

0.210

0.146

0.195

0.278

0.132

0.128

0.158

0.114

0.262

0.206

0.152

0.203

0.212

0.143

0.103

LOVELY

0.227

0.157

CAT

0.229

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

42 L

Add & Norm

Masked
Multi-Head
Attention

At
)
@ Positional

Encoding
Output

Embedding

!

Outputs
(shifted right)

_>. ' .
Input —> X

(seq, drodel)

_>. ' .

KT

Q
Vi

Attention(Q, K,V) = softmax

head;

seq = sequence length

model = size of the embedding vector

h = number of heads

dy-d, =d

mode

//h

Attention(QW,2, KWK, vw/)

d

model

A

seq vour oasn e orse o o o

QKT s o - o e
softmax| — =
1' dk .

All the values above the diagonal
are replace with -ee before applying the softmax,
which will replace them with zero.

|4

v v \ 4 v
squIIF.X._.
H—)
d,
L

J

Y
d

model

MultiHead(Q,K,V) = Concat(head, ...head,)W?°

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Inference and training of a Transformer model

https://github.com/hkproj/transformer-from-scratch-notes

Training

NP4

| love you very much
S y Y

I I Ti amo molto

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Ti amo molto <EOS>

T [) [)
rd I n I n g * This is called the “label” or the "target”

Time Step =1 . . Softmax > Cross Entropy Loss
It all happens in one time step! (oo vacabLsize)

The encoder outputs, for each word a vector that not only captures
its meaning (the embedding) or the position, but also its interaction Linear
with other words by means of the multi-head attention.

(seq, dimoder) = (seq, vocab_size)

QOutput
Probabilities

Encoder Decoder
Output Output
(seq, dmodel) (seq, drmodel)
T e ‘ ™\ I Add & Norm |<\
A6\ N Multi-Head
Attention
Nx
1> Decoder
Add & Norm
Nx Add & Norm Maslked
Multi-Head Multi-Head
Attention Attention
T T A ’ A)
_ J U —
Positional o) 4 Positional
Encoding ¥ Encoding
Encoder Decoder Tout Output
Input Input I Embedding I | Embedding |
(sed, dmodel) (seq diodel)
Inputs Outputs
T T (shifted right)
. We prepend the <SOS> token at the beginning. That's
<SOS> | love you very much <EOS> <SOS> Ti amo molto Prep 9 9

why the paper says that the decoder input is shifted right.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Inference

NP4

| love you very much
S y Y

I I Ti amo molto

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Inference T
Time Step =1

We select a token from the vocabulary corresponding to the position

Softmax . .
of the token with the maximum value.

(seq, vocab_size)

!

Linear The output of the last layer is commonly known as logits
(seq, dodel) = (seq, vocab_size)

Output
Probabilities

Encoder Decoder
AL Output
(seq, dmodel) (seq, drmodel)
| Add & Norm |<\
£dd & Horm Multi-Head
Attention
Nx
Nx Add & Norm
Add & Norm VER
Multi-Head Multi-Head
Attention Attention
A) A)
_ J _ ——
Positional o) @ Positional
Encodin Ei i
Encoder Decoder ’ ot Output reoans
Input Input I Embedding I I Embedding I
(seq, dinodel) (seq, drmodel) out Outout
nputs utputs
T T (shifted right)
<SOS>! love you very much<EOS> <SOS> * Both sequences will have same length thanks to padding

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

amo

Inference
Time Step = 2

Since decoder input now contains two tokens, we

Softmax
select the softmax corresponding to the second token.

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

QOutput
Probabilities

((Add & Norm]

Decoder
Output

(seq, drncvdel)

J

| Add & Norm |<-\

Sl Mult-Head

: Attention
Use the encoder output from the first Nx
. Decoder

time step Nx Add & Norm
Add & Norm VER

Multi-Head Multi-Head

Attention Attention

A) A p)

Q J \ —
Positional A Positional
Encodii N i
Decoder ncoding | Encoding
nput Output
Input I Embedding I I Embedding l
(seq, dmodel)
Inputs Outputs
(shifted right)
<SOS>! love you very much<EOS> <SOS> ti Append the previously output word to the decoder input

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

molto

Inference
Time Step = 3

Since decoder input now contains three tokens, we

Softmax
select the softmax corresponding to the third token.

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

QOutput
Probabilities

((Add & Norm]

Decoder
Output

(seq, drncvdel)

J

| Add & Norm |<-\

Sl Mult-Head

: Attention
Use the encoder output from the first Nx
. Decoder

time step Nx Add & Norm
Add & Norm Mas;Ked

Multi-Head Multi-Head

Attention Attention

A) A p)

Q J \ —
Positional A Positional
Encodii P -
Decoder ncoding | Encoding
nput Output
Input I Embedding I I Embedding l
(seq, dmodel)
Inputs Outputs
(shifted right)
<SOS>! love you very much<EOS> <SOS>tiamo Append the previously output word to the decoder input

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Inference
Time Step =4

Use the encoder output from the first
time step

<SOS>! love you very much<EOS>

<EOS>

Softmax

(seq, vocab_size)

Linear

(seq, doger) 2 (seq, vocab_size)

Decoder
Output

(seq, drncvdel)

Decoder

Decoder
Input

(Seq1 dmodel)

<SOS> ti amo molto

Since decoder input now contains four tokens, we
select the softmax corresponding to the fourth token.

QOutput
Probabilities

((Add & Norm]

J

| Add & Norm |<-\

£od & Nowm Multi-Head
Attention
Nx
Nx Add & Norm
Add & Norm VER
Multi-Head Multi-Head
Attention Attention
A) A p)

. J —
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Append the previously output word to the decoder input

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Inference strategy

We selected, at every step, the word with the maximum softmax value. This strategy is called greedy and usually does not perform very
well.

A better strategy is to select at each step the top B words and evaluate all the possible next words for each of them and at each step,
keeping the top B most probable sequences. This is the Beam Search strategy and generally performs better.

Umar Jamil - https://github.com/hkproj/transformer-from-scratch-notes

https://github.com/hkproj/transformer-from-scratch-notes

Thanks for watching!

Don’t forget to subscribe for
more amazing content on Al
and Machine Learning!

https://github.com/hkproj/transformer-from-scratch-notes

	Slide 1: Transformer from scratch
	Slide 2: Recurrent Neural Networks (RNN)
	Slide 3: Problems with RNN (among others)
	Slide 4: Introducing the Transformer
	Slide 5: Notations
	Slide 6: Encoder
	Slide 7: What is an input embedding?
	Slide 8: Encoder
	Slide 9: What is positional encoding?
	Slide 10: What is positional encoding?
	Slide 11: What is positional encoding?
	Slide 12: Why trigonometric functions?
	Slide 13: Encoder
	Slide 14: What is Self-Attention?
	Slide 15: How to compute Self-Attention?
	Slide 16: Self-Attention in detail
	Slide 17: Multi-head Attention
	Slide 18
	Slide 19: Why query, keys and values?
	Slide 20: Why query, keys and values?
	Slide 21: Encoder
	Slide 22: What is layer normalization?
	Slide 23: Decoder
	Slide 24: What is Masked Multi-Head Attention?
	Slide 25
	Slide 26: Inference and training of a Transformer model
	Slide 27: Training
	Slide 28: Training
	Slide 29: Inference
	Slide 30: Inference
	Slide 31: Inference
	Slide 32: Inference
	Slide 33: Inference
	Slide 34: Inference strategy
	Slide 35: Thanks for watching! Don’t forget to subscribe for more amazing content on AI and Machine Learning!

