from pathlib import Path from config import get_config, latest_weights_file_path from model import build_transformer from tokenizers import Tokenizer from datasets import load_dataset from dataset import BilingualDataset import torch import sys def translate(sentence: str): # Define the device, tokenizers, and model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Using device:", device) config = get_config() tokenizer_src = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_src'])))) tokenizer_tgt = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_tgt'])))) model = build_transformer(tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size(), config["seq_len"], config['seq_len'], d_model=config['d_model']).to(device) # Load the pretrained weights model_filename = latest_weights_file_path(config) state = torch.load(model_filename) model.load_state_dict(state['model_state_dict']) # if the sentence is a number use it as an index to the test set label = "" if type(sentence) == int or sentence.isdigit(): id = int(sentence) ds = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='all') ds = BilingualDataset(ds, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len']) sentence = ds[id]['src_text'] label = ds[id]["tgt_text"] seq_len = config['seq_len'] # translate the sentence model.eval() with torch.no_grad(): # Precompute the encoder output and reuse it for every generation step source = tokenizer_src.encode(sentence) source = torch.cat([ torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64), torch.tensor(source.ids, dtype=torch.int64), torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64), torch.tensor([tokenizer_src.token_to_id('[PAD]')] * (seq_len - len(source.ids) - 2), dtype=torch.int64) ], dim=0).to(device) source_mask = (source != tokenizer_src.token_to_id('[PAD]')).unsqueeze(0).unsqueeze(0).int().to(device) encoder_output = model.encode(source, source_mask) # Initialize the decoder input with the sos token decoder_input = torch.empty(1, 1).fill_(tokenizer_tgt.token_to_id('[SOS]')).type_as(source).to(device) # Print the source sentence and target start prompt if label != "": print(f"{f'ID: ':>12}{id}") print(f"{f'SOURCE: ':>12}{sentence}") if label != "": print(f"{f'TARGET: ':>12}{label}") print(f"{f'PREDICTED: ':>12}", end='') # Generate the translation word by word while decoder_input.size(1) < seq_len: # build mask for target and calculate output decoder_mask = torch.triu(torch.ones((1, decoder_input.size(1), decoder_input.size(1))), diagonal=1).type(torch.int).type_as(source_mask).to(device) out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask) # project next token prob = model.project(out[:, -1]) _, next_word = torch.max(prob, dim=1) decoder_input = torch.cat([decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1) # print the translated word print(f"{tokenizer_tgt.decode([next_word.item()])}", end=' ') # break if we predict the end of sentence token if next_word == tokenizer_tgt.token_to_id('[EOS]'): break # convert ids to tokens return tokenizer_tgt.decode(decoder_input[0].tolist()) #read sentence from argument translate(sys.argv[1] if len(sys.argv) > 1 else "I am not a very good a student.")