import torch import torch.nn as nn from torch.utils.data import Dataset class BilingualDataset(Dataset): def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): super().__init__() self.seq_len = seq_len self.ds = ds self.tokenizer_src = tokenizer_src self.tokenizer_tgt = tokenizer_tgt self.src_lang = src_lang self.tgt_lang = tgt_lang self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64) self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64) self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64) def __len__(self): return len(self.ds) def __getitem__(self, idx): src_target_pair = self.ds[idx] src_text = src_target_pair['translation'][self.src_lang] tgt_text = src_target_pair['translation'][self.tgt_lang] # Transform the text into tokens enc_input_tokens = self.tokenizer_src.encode(src_text).ids dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids # Add sos, eos and padding to each sentence enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # We will add and # We will only add , and only on the label dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 # Make sure the number of padding tokens is not negative. If it is, the sentence is too long if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0: raise ValueError("Sentence is too long") # Add and token encoder_input = torch.cat( [ self.sos_token, torch.tensor(enc_input_tokens, dtype=torch.int64), self.eos_token, torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64), ], dim=0, ) # Add only token decoder_input = torch.cat( [ self.sos_token, torch.tensor(dec_input_tokens, dtype=torch.int64), torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), ], dim=0, ) # Add only token label = torch.cat( [ torch.tensor(dec_input_tokens, dtype=torch.int64), self.eos_token, torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), ], dim=0, ) # Double check the size of the tensors to make sure they are all seq_len long assert encoder_input.size(0) == self.seq_len assert decoder_input.size(0) == self.seq_len assert label.size(0) == self.seq_len return { "encoder_input": encoder_input, # (seq_len) "decoder_input": decoder_input, # (seq_len) "encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len) "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len), "label": label, # (seq_len) "src_text": src_text, "tgt_text": tgt_text, } def causal_mask(size): mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int) return mask == 0