--- license: apache-2.0 tags: - jamba - smol MoE - smol metrics: - accuracy datasets: - BEE-spoke-data/knowledge-inoc-concat-v1 - BEE-spoke-data/wikipedia-20230901.en-deduped - BEE-spoke-data/fineweb-100k_en-med - BEE-spoke-data/fineweb-1M_en-med - BEE-spoke-data/fineweb-1M_longish language: - en inference: false --- # jamba-900M-v0.13-KIx2 Open In Colab > The API widget is off as it isn't supported by hf yet - try the Colab This is a pretraining experiment on the `jamba` arch as a "smol MoE". Details: - pretrained at context length 16384 - seen approx 20b tokens - uses Claude3 tokenizer (as hf GPT2 tokenizer) - hidden size 1024, 12 layers, 8 experts achieves the following results on the evaluation set (_most recent dataset_): - Loss: 3.0366 - Accuracy: 0.4514 - Num Input Tokens Seen: 1975517184 if I pretrain it further, other versions will be in new repos with incremented version (this is v0.13) ## Quick eval Quick eval for: pszemraj/jamba-H1024_L12-v0.13-KIx2 hf (pretrained=pszemraj/jamba-H1024_L12-v0.13-KIx2,trust_remote_code=True,dtype=float), gen_kwargs: (None), limit: 0.9999, num_fewshot: None, batch_size: 8 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|------:|------|-----:|----------|-------:|---|-----:| |winogrande | 1|none | 0|acc | 0.5067|± |0.0141| |piqa | 1|none | 0|acc | 0.5912|± |0.0138| | | |none | 0|acc_norm | 0.5951|± |0.0138| |openbookqa | 1|none | 0|acc | 0.1800|± |0.0172| | | |none | 0|acc_norm | 0.2920|± |0.0204| |lambada_openai| 1|none | 0|perplexity|103.1241|± |8.5843| | | |none | 0|acc | 0.2502|± |0.0122| |boolq | 2|none | 0|acc | 0.6196|± |0.0136| |arc_easy | 1|none | 0|acc | 0.3836|± |0.0137| | | |none | 0|acc_norm | 0.3694|± |0.0136| ## example outputs ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/wky-qjUtS0AJ6YtIsJh3T.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 80085 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:| | 3.2013 | 0.4241 | 200 | 3.0653 | 0.4479 | 419430400 | | 3.1976 | 0.8481 | 400 | 3.0434 | 0.4506 | 838860800 | | 3.1485 | 1.2722 | 600 | 3.0375 | 0.4513 | 1258291200 | | 3.1871 | 1.6963 | 800 | 3.0366 | 0.4514 | 1677721600 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1