--- license: apache-2.0 base_model: pszemraj/griffin-1024-llama3t-8layer-simplewiki-silu tags: - generated_from_trainer metrics: - accuracy model-index: - name: griffin-1024-llama3t-8layer-simplewiki-silu-fineweb-1M_en-med-vN results: [] datasets: - BEE-spoke-data/fineweb-1M_en-med language: - en --- # griffin-llama3t-8L-v0.02-fineweb Pretraining experiment with griffin/recurrent_gemma arch. This one uses the Llama-3 tokenizer. ## Model description Further training of [pszemraj/griffin-1024-llama3t-8layer-simplewiki-silu](https://huggingface.co/pszemraj/griffin-1024-llama3t-8layer-simplewiki-silu) on the BEE-spoke-data/fineweb-1M_en-med dataset. It achieves the following results on the evaluation set: - Loss: 5.6538 - Accuracy: 0.1881 - Num Input Tokens Seen: 766509056 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 80085 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:| | 6.4019 | 0.0684 | 400 | 6.7690 | 0.1278 | 52428800 | | 6.0547 | 0.1368 | 800 | 6.4214 | 0.1460 | 104857600 | | 5.8133 | 0.2052 | 1200 | 6.2566 | 0.1550 | 157286400 | | 5.7212 | 0.2736 | 1600 | 6.1411 | 0.1620 | 209715200 | | 5.6175 | 0.3420 | 2000 | 6.0502 | 0.1669 | 262144000 | | 5.5014 | 0.4104 | 2400 | 5.9827 | 0.1687 | 314572800 | | 5.4882 | 0.4788 | 2800 | 5.9203 | 0.1731 | 367001600 | | 5.3972 | 0.5472 | 3200 | 5.8614 | 0.1782 | 419430400 | | 5.3983 | 0.6156 | 3600 | 5.8340 | 0.1773 | 471859200 | | 5.3175 | 0.6840 | 4000 | 5.7916 | 0.1814 | 524288000 | | 5.3014 | 0.7524 | 4400 | 5.7565 | 0.1814 | 576716800 | | 5.2749 | 0.8208 | 4800 | 5.7303 | 0.1849 | 629145600 | | 5.2264 | 0.8892 | 5200 | 5.6993 | 0.1850 | 681574400 | | 5.2107 | 0.9576 | 5600 | 5.6745 | 0.1884 | 734003200 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1