--- license: - apache-2.0 - cc-by-nc-4.0 datasets: pszemraj/fleece2instructions-codealpaca tags: - generated_from_trainer - instruct - instructions - code - instructiongen metrics: - rouge language: - en widget: - text: | git lfs install huggingface-cli lfs-enable-largefiles . git lfs track "*.bin" git add . git commit -a -m "add fp32 chkpt" git push example_title: bash - text: | export interface DocumentParams { pageContent: string; // eslint-disable-next-line @typescript-eslint/no-explicit-any metadata: Record; } /** * Interface for interacting with a document. */ export class Document implements DocumentParams { pageContent: string; // eslint-disable-next-line @typescript-eslint/no-explicit-any metadata: Record; constructor(fields?: Partial) { this.pageContent = fields?.pageContent ?? this.pageContent; this.metadata = fields?.metadata ?? {}; } } example_title: js - text: | def merge(left, right): if len(left) == 0: return right if len(right) == 0: return left result = [] index_left = index_right = 0 while len(result) < len(left) + len(right): if left[index_left] <= right[index_right]: result.append(left[index_left]) index_left += 1 else: result.append(right[index_right]) index_right += 1 if index_right == len(right): result += left[index_left:] break if index_left == len(left): result += right[index_right:] break return result example_title: merge - text: > import pandas as pd import plotly.graph_objects as go df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv') fig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'], name='Share Prices (in USD)')) fig.update_layout(title='Apple Share Prices over time (2014)', plot_bgcolor='rgb(230, 230,230)', showlegend=True) fig.show() example_title: plot - text: | from spellchecker import SpellChecker spell = SpellChecker() def check_word_spelling(word: str): misspelled = spell.unknown([word]) return len(misspelled) == 0 def eval_and_replace(text: str, match_token: str = "- "): if match_token not in text: return text else: while True: full_before_text = text.split(match_token, maxsplit=1)[0] before_text = [ char for char in full_before_text.split()[-1] if char.isalpha() ] before_text = "".join(before_text) full_after_text = text.split(match_token, maxsplit=1)[-1] after_text = [char for char in full_after_text.split()[0] if char.isalpha()] after_text = "".join(after_text) full_text = before_text + after_text if check_word_spelling(full_text): text = full_before_text + full_after_text else: text = full_before_text + " " + full_after_text if match_token not in text: break return text text = "I- am- a go- od- boy" eval_and_replace(text) example_title: spell check - text: > import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequences = ["I've been waiting for a HuggingFace course my whole life.", "So have I!"] tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt") output = model(**tokens) example_title: model inference inference: parameters: max_length: 96 num_beams: 4 --- # bart-base-code-instructiongen Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code! This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the `pszemraj/fleece2instructions-codealpaca` dataset. It achieves the following results on the evaluation set: - Loss: 1.0136 - Rouge1: 59.9513 - Rouge2: 33.9118 - Rougel: 55.7815 - Rougelsum: 56.9064 - Gen Len: 29.7146 ## Intended uses & limitations 🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**. > This is just a `base` size model, which does a decent job for its size, but is not perfect. For better quality instructions, check out [bart-large](https://huggingface.co/pszemraj/bart-large-code-instructiongen) or fine tune your own larger model on the dataset :) Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs. ## Training and evaluation data Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.1165 | 1.0 | 281 | 1.1090 | 57.9239 | 31.9259 | 53.8737 | 54.9811 | 28.2924 | | 1.0763 | 2.0 | 563 | 1.0267 | 59.9605 | 34.0298 | 55.7523 | 56.8021 | 29.6966 | | 0.9595 | 2.99 | 843 | 1.0136 | 59.9513 | 33.9118 | 55.7815 | 56.9064 | 29.7146 |