distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3129
- Accuracy: {'accuracy': 0.86}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4795 | {'accuracy': 0.85} |
0.4131 | 2.0 | 500 | 0.6526 | {'accuracy': 0.851} |
0.4131 | 3.0 | 750 | 0.6766 | {'accuracy': 0.854} |
0.2017 | 4.0 | 1000 | 0.9597 | {'accuracy': 0.855} |
0.2017 | 5.0 | 1250 | 0.9623 | {'accuracy': 0.857} |
0.1102 | 6.0 | 1500 | 0.9842 | {'accuracy': 0.866} |
0.1102 | 7.0 | 1750 | 1.1943 | {'accuracy': 0.859} |
0.023 | 8.0 | 2000 | 1.2874 | {'accuracy': 0.859} |
0.023 | 9.0 | 2250 | 1.3154 | {'accuracy': 0.859} |
0.0047 | 10.0 | 2500 | 1.3129 | {'accuracy': 0.86} |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for psykick21/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased