--- library_name: coqui pipeline_tag: text-to-speech language: gl license: apache-2.0 datasets: - CRPIH_UVigo-GL-Voices/Sabela tags: - TTS - speech-synthesis - Galician - female-speaker - VITS - coqui.ai --- # Sabela: Nos Project's Galician TTS Model ## Model description This model was trained from scratch using the [Coqui TTS](https://github.com/coqui-ai/TTS) Python library on the Sabela corpus of the dataset [CRPIH_UVigo-GL-Voices](https://zenodo.org/record/8027725). A live inference demo can be found in our official page, [here](https://tts.nos.gal/). The model needs the [Cotovia](http://gtm.uvigo.es/en/transfer/software/cotovia/) tool to work correctly. For installation and deployment please consult the [Cotovía Preprocessor](#cotovía-preprocessor) section. ## Intended uses and limitations You can use this model to generate synthetic speech in Galician. ## How to use ### Usage #### Cotovía preprocessor To generate fonectic transcriptions, the Cotovía tool is needed. The tool can be downloaded from the [SourceForge](https://sourceforge.net/projects/cotovia/files/Debian%20packages/) website. The required debian packages are `cotovia_0.5_amd64.deb` and `cotovia-lang-gl_0.5_all.deb`, that can be installed with the following commands: ```bash sudo dpkg -i cotovia_0.5_amd64.deb sudo dpkg -i cotovia-lang-gl_0.5_all.deb ``` The tool can be used to generate the phonetic transcription of the text. The following command can be used to generate the phonetic transcription of a text string: ```bash echo "Era unha avioneta... O piloto era pequeno, que se chega a ser dos grande, tómbate!" | cotovia -t -n -S | iconv -f iso88591 -t utf8 ``` The output of the command is the phonetic transcription of the input text. This string may be used in the inference part, as shown next. Required libraries: ```bash pip install TTS ``` Synthesize a speech using python: ```bash import tempfile import numpy as np import os import json from typing import Optional from TTS.config import load_config from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer model_path = # Absolute path to the model checkpoint.pth config_path = # Absolute path to the model config.json text = "Text to synthetize" synthesizer = Synthesizer( model_path, config_path, None, None, None, None, ) wavs = synthesizer.tts(text) ``` ## Training ### Training Procedure ### Data preparation ### Hyperparameter The model is based on VITS proposed by [Kim et al](https://arxiv.org/abs/2106.06103). The following hyperparameters were set in the coqui framework. | Hyperparameter | Value | |------------------------------------|----------------------------------| | Model | vits | | Batch Size | 48 | | Eval Batch Size | 16 | | Mixed Precision | true | | Window Length | 1024 | | Hop Length | 256 | | FTT size | 1024 | | Num Mels | 80 | | Phonemizer | null | | Phoneme Lenguage | null | | Text Cleaners | null | | Formatter | nos_fonemas | | Optimizer | adam | | Adam betas | (0.8, 0.99) | | Adam eps | 1e-09 | | Adam weight decay | 0.01 | | Learning Rate Gen | 0.0002 | | Lr. schedurer Gen | ExponentialLR | | Lr. schedurer Gamma Gen | 0.999875 | | Learning Rate Disc | 0.0002 | | Lr. schedurer Disc | ExponentialLR | | Lr. schedurer Gamma Disc | 0.999875 | The model was trained for 256275 steps. The nos_fonemas formatter is a modification of the LJSpeech formatter with one extra column for the normalized input (extended numbers and acronyms). ## Additional information ### Authors Alp Öktem, Carmen Magariños and Antonio Moscoso. ### Contact information For further information, send an email to proxecto.nos@usc.gal ### Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This research was funded by “The Nós project: Galician in the society and economy of Artificial Intelligence”, resulting from the agreement 2021-CP080 between the Xunta de Galicia and the University of Santiago de Compostela, and thanks to the Investigo program, within the National Recovery, Transformation and Resilience Plan, within the framework of the European Recovery Fund (NextGenerationEU). ### Citation information If you use this model, please cite as follows: Öktem, Alp; Magariños, Carmen; Moscoso, Antonio. 2024. Nos_TTS-sabela-vits-phonemes. URL: https://huggingface.co/proxectonos/Nos_TTS-sabela-vits-phonemes